
Lecture 2: currents. June 25, 2024
(Geometric Measure Theory)

We now turn to the first weak notion of submanifold, namely currents, which are

particularly well suited to minimize area under a given homological condition (assigned

boundary or homology class).

2.1. General currents, normal currents, and operations with them. While we will

soon focus on rectifiable currents (and actually on integral ones), it is useful to clarify what

a current is in general.

Let (Mn, g) be a Riemannian manifold. Similar to distributions, k-dimensional currents

are elements in the dual of Ωk
c (M), the space of smooth real-valued k-forms with compact

support. In principle, this definition does not require M to come with an assigned metric g.

Note that an oriented embedded k-dimensional submanifold Σ ⊆ M (of locally finite

area) gives automatically a current, denoted JΣK, by the formula

⟨JΣK, ω⟩ :=
∫
Σ
ω, for ω ∈ Ωk

c (M).

In the previous formula, it is important that Σ is oriented in order to give a meaning to the

right-hand side.

Currents can be used to define a homology theory. Indeed, given a k-dimensional current

T , we can define its boundary ∂T , which is a (k − 1)-dimensional current, by the formula

⟨∂T, η⟩ := ⟨T, ∂η⟩, for η ∈ Ωk−1
c (M).

If Σ is a compact oriented manifold with boundary, then the current ∂JΣK that we just

defined coincides with the current J∂ΣK arising from the boundary ∂Σ, since by Stokes

⟨J∂ΣK, η⟩ =
∫
∂Σ
η =

∫
Σ
dη = ⟨JΣK, dη⟩ = ⟨∂JΣK, η⟩.

Thus, the definition of ∂T can be seen as a weak notion of boundary, generalizing the

obvious one for manifolds with boundary.

Moreover, since d ◦ d = 0 on forms, we immediately deduce that any current T satisfies

∂(∂T ) = 0.

In particular, given any class of currents (i.e., a choice of an additive subgroup Gk of the

space of k-dimensional currents on M , for each k = 0, . . . , n), assuming that it is preserved

by the boundary operator (i.e., ∂T ∈ Gk−1 for all T ∈ Gk), we can define

Hk(M) :=
ker ∂k

image ∂k+1
,
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where ∂k : Gk → Gk−1 is the boundary operator (and Gk := {0}, ∂k := 0 for k ̸∈ {0, . . . , n}).

Theorem 2.1. For the class of integral currents (defined below), this homology is naturally

isomorphic with the usual singular homology H∗(M,Z).

While we will soon specialize to integral currents, there is a slightly larger class which is

equally important, given by normal currents (although they are not really relevant to our

story, concerning the calculus of variations for the area). This is the space of currents T

such that both T and ∂T have finite mass, where

M(T ) := sup{⟨T, ω⟩ | ω ∈ Ωk
c (M) such that |ω| ≤ 1 pointwise}

is the definition of the mass of T . For this to make sense, it is now important to have an

assigned metric g on M (so that |ω| is defined).

Exercise 2.2. Check that M(JΣK) is precisely the area of Σ.

Remark 2.3. The correct definition of mass is slightly more complicated and involves the

comass norm on covectors, but the result is comparable with the one from the previous

definition. In fact, the previous definition agrees with the correct one for rectifiable currents.

Example 2.4. Consider the set C of nonconstant, injective, constant-speed loops γ : S1 →M

and the set A of arcs γ : [0, 1] → M (with the same properties). Given finite (positive)

measures σ, τ on these sets, we can define a normal 1-current T by

⟨T, ω⟩ :=
∫
C
⟨JγK, ω⟩ dσ(γ) +

∫
A
⟨JγK, ω⟩ dτ(γ),

where ⟨JγK, ω⟩ :=
∫
γ ω. If M is complete, a theorem due to Smirnov says that a normal

1-current T always arises as a superposition of curves in this way (to be precise, one has to

allow for something more general than loops, namely suitably normalized “infinite loops”:

consider the classical curves of irrational slope on T2). Moreover, the decomposition can be

chosen to be irredundant, in the sense that

M(T ) =

∫
C
M(JγK) dσ(γ) +

∫
A
M(JγK) dτ(γ)

and

M(∂T ) =

∫
A
M(∂JγK) dτ(γ) = 2τ(A).

Remark 2.5. Even when T has an irredundant representation involving only arcs, it does

not need to be unique. For instance, the union of the two segments in the plane joining (0, 0)

to (1, 1) and (0, 1) to (1, 0), respectively, can also be viewed as a union of two “wedges,”

joining (0, 0) to (1, 0) and (0, 1) to (1, 1), respectively.
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By the Riesz representation theorem, if T has finite mass then in fact we can think it as

a finite Λk(TM)-valued measure, in the sense that there exists a finite (positive) measure µ

and a Borel unit section τ :M → Λk(TM) such that

⟨T, ω⟩ =
∫
M
⟨ω(x), τ(x)⟩ dµ(x),

where ⟨ω(x), τ(x)⟩ is the usual pairing between (multi)covectors and (multi)vectors on TxM .

We will often write |T | to indicate this positive measure µ and refer to it as the weight of T .

Example 2.6. Note that for the special case T = JΣK seen above we have µ = Hk Σ and

τ(x) is obtained by wedging an oriented basis of TxΣ, for all x ∈ Σ (while we can define it

in an arbitrary way on M \ Σ, which is µ-negligible).

Assume now that M,M ′ are two manifolds of possibly different dimension. Given a

C∞-smooth proper map φ : M → M ′ (meaning that the preimage of a compact set is

compact) and a k-dimensional current T on M , we can push it to a k-dimensional current

on M ′, called the pushforward of T via φ and denoted φ∗T . It is given by

⟨φ∗T, ω⟩ := ⟨T, φ∗ω⟩

for any ω ∈ Ωk
c (M

′), where φ∗ω is the pullback of ω via φ.

Exercise 2.7. Check that if T = JΣK then φ∗T = Jφ(Σ)K. Thus, this is a weak notion of

image of a submanifold.

Exercise 2.8. Check that the boundary operator commutes with the pullback, i.e., φ∗(∂T ) =

∂(φ∗T ).

Exercise 2.9. Check that M(φ∗T ) ≤ LkM(T ) if φ is L-Lipschitz.

For a normal current, we can merely assume that φ is locally Lipschitz and proper.

Indeed, we can let

⟨φ∗T, ω⟩ := lim
ε→0

⟨(φε)∗T, ω⟩,

where (φε)ε>0 is a regularization of φ (namely, a family of smooth maps converging pointwise

to φ such that φε is locally Lipschitz and proper, uniformly with respect to ε).

Proposition 2.10. The previous limit exists and defines a current. In fact, it defines a

normal current if φ is Lipschitz and M is complete (in which case we can also drop the

properness assumption).

While the proof is not important for the purposes of this course, we give a sketch of proof

since a similar idea will appear later on.
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Proof. We will just show the existence of the limit, assuming for simplicity thatM =M ′ = Rn

and T has compact support K. Given 0 < δ < ε, we define

ψ(t, x) := (1− t)φδ + tφε,

a smooth homotopy between φδ and φε. Letting I := [0, 1], we consider the current

T̂ := JIK × T

on Rn+1 (the Cartesian product of two currents is defined in the natural way). Moreover,

we have

∂T̂ = J{1}K × T − J{0}K × T.

Hence,

∂(ψ∗T̂ ) = ψ∗(∂T̂ ) = (φε)∗T − (φδ)∗T.

Moreover, given a (k + 1)-form ω we have

|⟨ψ∗T̂ , ω⟩| ≤ M(T̂ )∥ψ∗ω∥C0(K) ≤ M(T̂ )∥ω∥C0 · C(K) sup
K

|φδ − φε| → 0

as δ, ε→ 0 since, calling the coordinates (t, x1, . . . , xn), in the pullback ψ∗ω only the terms

of the form f dt ∧ dxj1 ∧ · · · ∧ dxjk matter (as T̂ vanishes against the remaining ones) and

for these |f | ≤ C(K) supK |∂tψ| = C(K) supK |φδ − φε| on K.

Thus, while (φε)∗T − (φδ)∗T might have a large mass, it is the boundary of a current of

vanishing mass (as we see from the previous bound by taking the supremum over the forms

ω with ∥ω∥C0 ≤ 1). This proves the claim, since

|⟨(φε)∗T, ω⟩ − ⟨(φδ)∗T, ω⟩| = |⟨∂(ψ∗T̂ ), ω⟩| = |⟨ψ∗T̂ , dω⟩| ≤ M(ψ∗T̂ )∥dω∥C0

converges to 0 as δ, ε→ 0. □

Exercise 2.11. Give the definition of Cartesian product of two currents, assuming for

simplicity that we are working on Euclidean spaces.

Exercise 2.12. Check that indeed ∂T̂ = J{1}K× T − J{0}K× T and ψ∗(J{0}K× T ) = (φδ)∗T

(and similarly for the other endpoint).

Another operation that can be done with normal k-currents with k ≥ 1 is slicing. To

simplify, assume that we are dealing with a cycle T , i.e., a k-current with zero boundary,

and assume that ϕ : M → R is a Lipschitz map. We would like to “intersect” T with a

generic level set {ϕ = t} in order to obtain a (k − 1)-current. Assuming that T is normal

with ∂T = 0, this can be defined for any t ∈ R by means of the formula

⟨T, ϕ, t⟩ := ∂(1{ϕ<t}T ).
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This makes sense since, thanks to the representation of normal currents as measures, it

makes sense to multiply them by an indicator function, obtaining another k-current 1{ϕ<t}T

of which we can take the boundary. Actually, one can prove the following.

Proposition 2.13. The t-slice ⟨T, ϕ, t⟩ has zero boundary and finite mass for a.e. t and we

have ∫
R
M(⟨T, ϕ, t⟩) dt ≤ Lip(ϕ)M(T ).

We can even define slicing via Rp-valued Lipschitz maps ϕ :M → Rp. A possible definition

is to iterate the previous slicing for each component, p times. Otherwise, given a standard

family of smooth approximations χε of the Dirac mass δ0, we can consider the function

χt,ε := χε(· − t) and let

⟨⟨T, ϕ, t⟩, ω⟩ := lim
ε→0

⟨T, (χt,ε ◦ ϕ) dϕ1 ∧ · · · ∧ dϕp ∧ ω⟩.

It can be shown that the previous limit defines a normal (k − p)-current for a.e. t, with the

same bound as above (note that, since T has finite mass, it makes sense to pair it with any

bounded measurable k-form).

2.2. Integral currents. Integral currents are normal currents T such that both T and ∂T

are given by rectifiable sets with integer multiplicity. More precisely, we assume that there

exist a k-rectifiable Borel set S and Borel (or just Hk-measurable) maps

ν : S → N \ {0}, τ : S → Λk(TM)

such that τ(x) is of the form τ = v1 ∧ · · · ∧ vk for an orthonormal basis {vj}kj=1 of TxS (at

a.e. x ∈ S) and
∫
S ν dH

k <∞, as well as

⟨T, ω⟩ =
∫
S
ν(x)⟨ω(x), τ(x)⟩ dHk(x),

and we assume that ∂T has a similar structure. In other words, in terms of the objects

µ and τ obtained above for any finite-mass current, we require that µ is rectifiable with

integer density (µ-a.e.) and that τ(x) is an orientation of TxS (µ-a.e.), and similarly for ∂T .

Remark 2.14. When k = 0, an integral 0-current is just a measure of the form
∑

j αjδpj

supported on a discrete set of points, with αj ∈ Z\{0} (encoding the multiplicity ν(pj) = |αj |
and the orientation τ(pj) = sgn(αj)).

The following is a rather surprising fact, which we just state.
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Theorem 2.15 (boundary rectifiability). In fact, for a normal current, the corresponding

requirements for ∂T , as well as the fact that τ(x) ∈ Λk(TxM) is an orientation of TxS, are

automatically satisfied. Thus, if the weight |T | of a normal current T is rectifiable with

integer multiplicity then T is an integral current.

Exercise 2.16. The (k− 1)-rectifiability of |∂T | could fail if we replace positive integers with

positive real numbers (0,∞): find a counterexample when k = 1, by building an infinite

tree in which the multiplicity of each edge is divided equally among its children (so that

intermediate nodes do not contribute to ∂T ).

Example 2.17. If E ⊆M is a set of finite perimeter, then it is an important result of De

Giorgi that its reduced boundary ∂∗E is rectifiable and comes with a natural orientation.

The induced (n − 1)-current is precisely the boundary of JEK. In fact, if M is simply

connected and T is an integral (n− 1)-current, then we can always find nested sets

(Ej)j∈Z, Ej+1 ⊆ Ej

of finite perimeter, with
∑

j Hn−1(∂∗Ej) <∞, such that “T =
∑

j∈ZJEjK,” or more precisely

T =
∑
j>0

JEjK −
∑
j≤0

JM \ EjK

(with convergence of partial sums in the mass distance M(T ′ − T ′′)).

Exercise 2.18. Find a counterexample when M is not simply connected.

For integral currents, the pushforward and slicing have explicit expressions, which can

be proved using the area and coarea formulas. For instance, assuming for simplicity that

φ :M →M ′ is smooth, the pushforward is obtained with S′ := φ(S) and τ ′(y) an arbitrary

orientation of each tangent plane TyS
′, while

ν ′(y) :=
∑

x∈φ−1(y)

ε(x)ν(x),

where ε(x) is 1 if dφ(x) maps τ(x) to τ ′(y) and −1 if it maps τ(x) to −τ ′(y) (for a.e. y, the
sum is finite and consists of points x where dφ(x) is injective, and actually dφ[τ(x)] = ±τ ′(y)
for all of them). If we insist on having multiplicity in N \ {0}, we should remove from S′

the points y with ν ′(y) = 0 and we should replace τ ′(y) with −τ ′(y) at the points y with

ν ′(y) < 0 (so that the multiplicity becomes positive).

Example 2.19. If φ : R2 → R2 is given by φ(x1, x2) := (|x1|, x2) and T := J[−1, 1]× {0}K
(oriented from left to right), then φ∗T = 0. Intuitively, φ folds the segment into two segments

with opposite orientation, which cancel each other.
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Similarly, assuming that ϕ :M → R is smooth and real-valued, for a.e. t ∈ R the t-slice is

obtained with S′ := S ∩ ϕ−1(t) and ν ′ := ν|S′ , while τ ′ is such that ∇φ
|∇φ|(x) ∧ τ

′(x) = τ(x).

2.3. Polyhedral deformation, closure, and compactness. The proof that pushforward

via a Lipschitz map can be defined for normal currents essentially showed convergence of

(φε)∗T in the flat topology. This has a different definition depending on the context.

On the class of integral k-currents, it is the topology induced by the following flat metric:

d(T, T ′) = F(T − T ′) := inf{M(R) +M(S) | T − T ′ = R+ ∂S},

where R ranges among integral k-currents and S among integral (k + 1)-currents such that

T − T ′ = R + ∂S (for normal currents, one just takes R and S normal, and so on). In

ambients where Hk(M,Z) = 0, on the class of integral k-cycles one can also use the similar

(not equivalent) definition inf{M(S) | T − T ′ = ∂S}.
Clearly, if a sequence of currents converges in the flat metric then it converges in the

natural weak topology (of the dual of k-forms).

Remark 2.20. The name “flat metric” is an unfortunate one: it does not have anything to

do with the curvature of the ambient manifold M .

Example 2.21. As a simple example, let Tk be the segment [0, 1]× {2−k} with multiplicity

1 and the orientation from left to right. Then Tk converges to the 1-current T given by

the segment [0, 1]× {0}, with respect to the flat metric. Indeed, we can take Sk to be the

rectangle [0, 1] × [0, 2−k] with the standard orientation and Rk the sum of the vertical

segments {0} × [0, 2−k] and {1} × [0, 2−k] (with the orientation from bottom to top for the

first one and the opposite for the second one). Then we have

T − Tk = Rk + ∂Sk

and M(Rk) = 2 · 2−k → 0, as well as M(Sk) = 2−k → 0. On the other hand, with respect to

the much stronger mass distance (T, T ′) 7→ M(T − T ′) we do not have convergence, since

M(T − Tk) = 2 for all k.

It turns out that, with respect to this metric, one can approximate any integral current

with particularly nice ones, the polyhedral currents, which are finite sums of k-faces of a

smooth simplicial complex (so that these faces are smoothly embedded and any two of them

meet in a transversal way along a lower dimensional face).

Theorem 2.22 (polyhedral deformation theorem). Given k ≥ 1 and an integral

k-current T , in Rn or in a compact manifold (Mn, g), and given ρ > 0 (arbitrary in Rn
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and small enough in a manifold (Mn, g), depending only on the latter), we can write

T = P +R+ ∂S

for integral currents P,R, S (of dimension k, k, and k + 1, respectively) supported in a

C(n)ρ-neighborhood of spt(T ), with P a polyhedral current whose faces have diameter

comparable with ρ and

M(P ) ≤ C(n)M(T ), M(∂P ) ≤ C(n)M(∂T ),

as well as

M(R) ≤ C(n)ρM(∂T ), M(S) ≤ C(n)ρM(T )

(so that clearly M(∂R) ≤ C(n)M(∂T ) and M(∂S) ≤ C(n)M(T ) + C(n)ρM(∂T )).

Proof. We work in Rn for simplicity but we give a proof that can be easily adapted to

manifolds. By scaling, we can assume that σ = 1. We decompose Rn into a simplicial

complex in which each simplex has diameter comparable with 1.

For simplicity, we also assume that ∂T = 0. Assume that T is supported on the ℓ-skeleton

(the union of ℓ-dimensional faces of the complex) for some ℓ > k. We want to construct a

new T ′ supported on the (ℓ− 1)-skeleton by suitably projecting T onto it.

The proof uses a similar idea to the one used in the proof that pushforward via Lipschitz

maps makes sense for normal currents. Given an ℓ-simplex ∆, we consider a smaller simplex

∆′ included in its interior. For any fixed p ∈ ∆′, we consider the (locally Lipschitz) radial

projection map

πp : ∆ \ {p} → ∂∆.

If we take a point p = p∆ in each ℓ-simplex, these maps glue to a map π from the ℓ-skeleton

to the (ℓ− 1)-skeleton. However, π is not defined on the finite set of such center points p∆.

The idea is that, taking these points p∆ randomly, we can still perform the pushforward

through π, with the desired estimates.

Indeed, note that |dπp(x)| ≤ C(n)|x− p|−1. Thus, considering the current

T̃ := 1⋃
∆(∆\Br(p∆))T

(this is a well-defined normal current for a.e. r), since it is supported far from each p∆ we

can define π∗T̃ and, using the area formula, we see that

M(π∗T̃ ) ≤
∑

∆ ℓ-simplex

∫
∆
|x− p∆|−k d|T̃ |(x) ≤

∑
∆ ℓ-simplex

∫
∆
|x− p∆|−k d|T |(x),

where |T̃ | is the weight of T̃ . The same computation shows that these currents form a

Cauchy sequence (in the mass distance) as r → 0 if the last sum of integrals is finite, so we
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can define the pushforward T ′ := π∗T as their limit. It is easy to check that this limit is

rectifiable, with integer multiplicity.

Now we have∫
∆′

∫
∆
|x− p|−k d|T |(x) dHℓ(p) =

∫
∆

∫
∆′

|x− p|−k dHℓ(p) d|T |(x) ≤ C(n)|T |(∆),

where we crucially used the fact that ℓ > k in the last inequality. Since ∆′ has measure

comparable with 1, in average (as p ranges) the previous integral over ∆ is bounded by

C(n)|T |(∆). We can then find p = p∆ such that∫
∆
|x− p∆|−k d|T |(x) ≤ C(n)|T |(∆) <∞.

Moreover, by constructing a homotopy on each ∆ \ {p∆} between the identity and πp∆

(and arguing with the truncated currents for each r > 0), we can construct an integral

(k + 1)-current S such that

T − T ′ = ∂S,

with the desired bound on S. The theorem follows by repeating this projection n− k times,

obtaining finally a current on the k-skeleton. The latter is a sum of k-dimensional faces by

the constancy theorem (see the exercise below). □

Exercise 2.23. Prove the general case where ∂T ̸= 0, by first applying the special case

to ∂T in place of T and reducing to a k-current whose boundary is already a sum of

(k − 1)-simplices.

Exercise 2.24. Prove the constancy theorem: given a connected, embedded C1-smooth

k-dimensional submanifold Σk ⊂ U and an integral k-current with zero boundary supported

on Σ in an open set U , prove that this current is a constant multiple of JΣK in U (reduce

first to the case where Σ is a subset of a k-plane in Rn).

Exercise 2.25. If T is an integral k-cycle (i.e., ∂T = 0) in Rn, show that there exists an

integral (k + 1)-current S such that

T = ∂S, M(S) ≤ C(n)M(T )(k+1)/k

(assuming k ≥ 1). Show that the same holds in a compact manifold, by embedding it in a

Euclidean space and using the nearest point projection, provided that M(T ) is small enough.

A consequence of the previous exercise is that, in a compact manifold, an integral cycle

with small enough mass is a boundary.

We also state the following fundamental result without proof.



10

Theorem 2.26 (closure of integral currents). Assume that Tj ⇀ T , for a sequence of

integral currents Tj such that

sup
j

M(Tj) <∞, sup
j

M(∂Tj) <∞.

Then T is also an integral current.

Note that it is not enough to assume Tj rectifiable (take Tj to be j horizontal segments

of the form [0, 1]× { ℓ
j }, for ℓ = 1, . . . , j, with multiplicity 1

j ; the limit is a diffuse current).

This theorem was initially proved by relying on another difficult result, asserting that

a purely unrectifiable set (a Borel set with finite Hk measure such that no Borel subset

of positive measure is rectifiable) has negligible projection on a.e. k-plane. Later, a much

simpler proof was found (partly independently) by Ambrosio–Kirchheim, Jerrard, and White,

using a characterization of integral k-currents saying essentially that, given a projection π

on a k-plane P , the slices (obtained via π) give a sort of BV function from P to the set of

integral 0-currents in Rn.

Let us rather see how to deduce the fundamental compactness property.

Theorem 2.27 (compactness of integral currents). Given a sequence (Tj) of integral

k-currents with supj M(Tj) < ∞ and supj M(∂Tj)) < ∞, we can extract a subsequence

converging to a limit integral k-current.

Proof. We assume for simplicity that the supports are all contained in a fixed compact set

K (otherwise the following argument applies locally). Given ρ > 0, we apply the polyhedral

deformation theorem to write

Tj = Pj +Rj + ∂Sj .

As we saw in the proof, Pj is a linear combination with integer coefficients of the faces of a

fixed simplicial complex covering K. These coefficients are bounded by the masses of Tj

and ∂Tj (for fixed ρ), and hence are bounded sequences of integers. Thus, a subsequence

converges:

Pj ⇀ P∞.

Now we are done by letting ρ→ 0 and using a diagonal argument, since given a k-form ω

we have

|⟨Tj − Pj , ω⟩| ≤ |⟨Rj , ω⟩|+ |⟨∂Sj , ω⟩| ≤ C(n)ρ[M(Tj) +M(∂Tj)][∥ω∥C0 + ∥dω∥C0 ]. □

The previous proof shows the following: given a compact set K ⊆M and C ≥ 0, the set

of integral k-currents

{T : spt(T ) ⊆ K, M(T ) +M(∂T ) ≤ C}
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is compact with respect to the flat distance: indeed, it is complete by the closure theorem

and it is totally bounded since, for any ε > 0, it is covered by finitely many balls BF
ε (Tj)

in the flat metric (the polyhedral ones associated to a fixed, sufficiently fine simplicial

complex; these Tj do not necessarily belong to the previous set, but of course any such ball

intersecting the set is included in a ball BF
2ε(T

′
j) with another center T ′

j in the set).

In particular, since the flat and the weak topologies are Hausdorff (and clearly the flat

one is finer), this compactness shows that they coincide on any set as above.

Remark 2.28. Using a blow-up argument and similar ideas as in the proof of the constancy

theorem, one can show the following rectifiability criterion: if the weight |T | of a normal

k-current T has

Θ∗
k(|T |, x) ∈ (0,∞) for |T |-a.e. x

then T is a rectifiable k-current, and actually an integral one if Θ∗
k(|T |, x) ∈ N a.e. However,

this is not so useful in practice: since the mass of currents is only lower semicontinuous,

if T arises as a limit of currents it is not easy to control its density. On the contrary, for

varifolds V , mass is continuous and thus rectifiability criteria of this kind, based on density,

are useful since they can often be checked in practice (and in fact the density automatically

exists and is finite if the varifold is stationary).

2.4. A partial solution to the Plateau problem. We can apply the previous compactness

result to minimize the area in various settings. For instance, we might want to minimize

area among submanifolds with an assigned boundary, or among those without boundary

belonging to a given homology class in Hk(M,Z).
Let us focus on the first setting, when M = Rn with the Euclidean metric. Given a

smooth embedded (k − 1)-submanifold Γk−1 without boundary (with k ≥ 2), we want to

find a k-dimensional submanifold Σk of least area with ∂Σ = Γ.

To do this, we replace the set of smooth submanifolds with the wider set of integral

currents. We let

Λ := inf{M(T ) | T integral k-current with ∂T = JΓK}.

We claim that this infimum is achieved, or in other words it is a minimum. First of all, note

that this set is not empty. The reason is that one possible competitor T is the so-called cone

over Γ: fixing any x0 ∈ Rn, we let

ψ(t, x) := (1− t)x0 + tx, T := ψ∗(JIK × JΓK).

This pushforward is defined even if ψ : Rn+1 → Rn is not proper nor Lipschitz, since

JIK × JΓK has compact support.
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Exercise 2.29. Check that, for this cone T , we indeed have ∂T = JΓK. What goes wrong for

k = 1?

We then take a minimizing sequence, i.e., a sequence Tj of currents in the previous set

such that M(Tj) → Λ. In fact, we can take them supported in a common compact set:

calling B a large closed ball including Γ, we can consider the nearest point projection

πB : Rn → B. Viewing it as a 1-Lipschitz map πB : Rn → Rn, we can replace Tj with

(πB)∗Tj , which has mass ≤ M(Tj) and boundary (πB)∗(∂Tj) = (πB)∗JΓK = JΓK.
By the previous compactness theorem, up to extracting a subsequence we have Tj ⇀ T

for an integral current T . Because of the weak definition of boundary, we have

∂T = lim
j→∞

∂Tj = JΓK.

Finally, we also have

⟨T, ω⟩ = lim
j→∞

⟨Tj , ω⟩ ≤ lim
j→∞

M(Tj) = Λ

for any k-form ω with |ω| ≤ 1 pointwise. Taking the supremum over ω gives M(T ) ≤ Λ, and

hence (since Λ was the infimum)

M(T ) = Λ.

This shows that T minimizes the mass in the previous set. Out of this property, we would

like to obtain some regularity of T . In the best case scenario, we would like to say that T is

actually a smooth submanifold with multiplicity 1, thus belonging to the initial class where

we considered our minimization problem.

Even if regularity of T looks quite intuitive (too much wiggling would cost too much area),

this is actually the hardest part of the story. We will hint at some ideas in the regularity

theory in codimension one (when k = n− 1), which is the most successful situation.

Remark 2.30. The previous computation shows that, in general, the mass of currents is

lower semicontinuous with respect to weak convergence. In fact, it can really drop in the

limit: for instance this happens when we consider two parallel segments with opposite

orientation coming closer and closer to each other, giving the trivial current in the limit.

Useful references:

• Chapter 6 of Simon, Geometric measure theory ;

• Chapter 7 of Krantz–Parks, Geometric integration theory ;

• for the modern proof of the closure theorem of integral currents: Chapter 7 of

Krantz–Parks, Geometric integration theory ;
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• for sets of finite perimeter: Chapter 12 of Maggi, Sets of finite perimeter and

geometric variational problems;

• again for sets of finite perimeter: Sections 3.3 and 3.5 of Ambrosio–Fusco–Pallara,

Functions of bounded variation and free discontinuity problems.
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