
Lecture 3: varifolds. June 27, 2024
(Geometric Measure Theory)

When we want to construct general critical points of the area rather than minimizing it,

we are often in the following situation: we have a sequence of “almost critical” k-dimensional

submanifolds Σ1,Σ2, . . . (or diffuse versions thereof) with area bounds

0 < inf
j
Hk(Σj) ≤ sup

j
Hk(Σj) < ∞

and we want to find a limit Σ critical for the area. Working with currents is not appropriate

since the mass (i.e., “area”) is only lower semicontinuous and we could end up with the

trivial limit Σ = 0 (in the minimization setting, this is not possible since Σ has an assigned

nontrivial boundary or homology class).

To circumvent this issue, we use another weak definition of submanifold. Naively, one

could just take a limit of Hk Σj in the weak-∗ topology (or a limit of the sets Σj in the

Hausdorff topology). However, we would like to study the regularity of the limit and exploit

the fact that it is critical for the k-dimensional area, and the problem arises that we cannot

easily define what criticality means for the limit measure (or set).

We could say that this limit is “critical” if its area is preserved at first order by ambient

diffeomorphisms. More precisely, taking any vector field X ∈ C1
c (M,TM) and considering

its flow (ΦX
t )t∈R, if we differentiate the area of the “image” ΦX

t (Σ) in t (at time t = 0) we

should get zero. But for a measure the obvious definition of “image” does not work, since

the pushforward of a measure has the same mass, and hence this definition of criticality is

not meaningful. A limit in the sense of sets does not work either, since in general one must

allow for multiplicity and, even once one devises a way to do this, checking criticality of the

limit becomes difficult.

Rather, we consider a sort of limit in the sense of Young measures, namely one which

remembers the direction of the tangent planes of Σj as well. This will allow us to define a

meaningful notion of “image” and “criticality.”

3.1. General varifolds and first variation. A varifold V on (Mn, g) is a (positive)

Radon measure on the Grassmannian bundle Grk(M) of unoriented k-planes on M . This

is the fiber bundle Grk(M) → M whose fiber above each x ∈ M is the set of all k-planes

P ⊆ TxM . If M = Rn, this bundle is trivial: we can simply think it as Rn ×Grnk , where the

second factor is the set of all k-planes in Rn (passing through the origin). We can make Grnk

into a compact metric space with the metric

d(P, P ′) := ∥πP − πP ′∥,
1
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where πP : Rn → Rn is the orthogonal projection onto P and we use the Hilbert–Schmidt

norm for n× n matrices.

The weight of V is |V | := (πM )∗V , the pushforward of V via the projection πM :

Grk(M) → M to the base manifold M , and is thus a measure on M . Hence, |V |(M) is the

“mass” or “area” of V .

Recall that, given a fiber bundle π : X → B with typical fiber F and a measure µ on X,

in a local trivialization X ⊇ π−1(U) ∼= U × F (with coordinates (b, f) ∈ U × F ) we can

always disintegrate µ as dµ(b, f) = dπ∗µ(b)⊗αb(f) for a suitable probability measure αb on

F , depending on b ∈ U .

Example 3.1. Given a k-rectifiable set S and a multiplicity f : S → (0,∞) (such that

f d(Hk S) is locally finite), these give rise to the varifold V whose disintegration with

respect to πM is

dV (x, P ) := d(Hk S)(x)⊗ δTxS(P ).

This means that at a.e. x ∈ S only the tangent plane TxS is “important.” Hence, given a

sequence of k-dimensional manifolds Σj of bounded area, we can always take the limit of

the associated varifolds up to a subsequences, which is just a limit of measures on Grk(M)

in the weak-∗ topology.

We can now give a meaningful definition of “image,” in the following way: given a

diffeomorphism Φ : M → M , it induces a diffeomorphism

Φ̂ : Grk(M) → Grk(M)

which maps a k-plane P ⊆ TxM to the plane dΦ(x)[P ] ⊆ TΦ(x)M . We also have the Jacobian

JΦ(P ) (given by
√

det(ATA), where A represents the linear map dΦ(x)|P with respect to

orthonormal bases of P and TΦ(x)M , or equivalently | det(B)|, where the square matrix

B represents dΦ(x)|P with respect to orthonormal bases of P and Φ̂(P )). We define the

varifold pushforward

Φ∗V := Φ̂∗Ṽ , where dṼ (P ) := JΦ(P ) dV (P ).

Here we omit the point x = πM (P ). In other words, we perform the usual measure

pushforward but only after multiplying by the correction factor JΦ. In particular, the mass

of Φ∗V can be different from the one of V .

Exercise 3.2. This is consistent with the usual image of submanifolds: if V is the varifold

associated to a rectifiable set S, then Φ∗V is the one associated to Φ(S).
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We say that V is stationary if it is a “critical point for the area” in the following sense:

for any vector field X ∈ C1
c (M,TM) we have

⟨δV,X⟩ := d

dt
|(ΦX

t )∗V |(K)
∣∣∣
t=0

= 0,

where K is an arbitrary compact set including the support of X (outside of spt(X), the flow

ΦX
t is just the identity; hence, two different K’s will give the same result). If |V |(M) < ∞,

we can simply take K := M .

Exercise 3.3. Show that the previous derivative always exists and is actually given by∫
Grk(M)

divP X(x) dV (x, P ),

where divP X(x) is the divergence of X along P , given by
∑

ℓ⟨eℓ,∇eℓX⟩, where {eℓ}kℓ=1 is

an arbitrary orthonormal basis of P ⊆ TxM .

Exercise 3.4. Show that if Vj ⇀ V and each Vj is stationary, then also the limit V is

stationary.

More generally, if there exists C(K) ≥ 0 such that |⟨δV,X⟩| ≤ C(K)∥X∥C0 for any vector

field X ∈ C1
c supported in K (for all compact K), we say that V has locally bounded first

variation and we can find a vector-valued measure H on M (with values in TM) such that

⟨δV,X⟩ = −
∫
M
⟨X, ν⟩ d|H|, where ν :=

dH

d|H|
.

Exercise 3.5. If Σ is a smooth, compact k-dimensional submanifold without boundary, then

the associated varifold has dH = HΣ d(Hk Σ), where HΣ is the mean curvature of Σ.

Exercise 3.6. This example shows how the notion of convergence for currents and varifolds

is fundamentally different. On the plane R2, for each j ≥ 1 consider the 1-dimensional

manifold

Σj :=

j⋃
ℓ=1

∂B1/(2πj)(pj,ℓ), pj,ℓ :=
(2ℓ− 1

2j
, 0
)

consisting of j disjoint circles of radius 1
2πj , whose centers are equally spaced along the

segment L := [0, 1]× {0}. Consider the associated current Tj obtained by orienting each

circle counterclockwise (and assigning multiplicity 1) and the associated varifold Vj (again

with multiplicity 1). Show that

lim
j→∞

Tj = 0, lim
j→∞

Vj = (H1 L)⊗ α,

where α is the uniform measure on Gr21
∼= RP1. Thus, even if H1(Σj) = 1 is constant, the

limit as currents vanishes, while as expected the limit varifold is nontrivial (but is not
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rectifiable: it assigns “equal importance” to all lines). [Hint: to show that Tj converges to

zero, note that it bounds a current of infinitesimal mass, given by j disks.]

3.2. Monotonicity formula for stationary varifolds. A fundamental tool in the theory

of stationary varifolds (and minimal submanifolds) is the existence of a monotone quantity.

To illustrate the heuristic reason behind it, we begin with a sloppy computation in the

smooth setting. Assume that Σk ⊂ Rn is a (properly) embedded submanifold minimizing

the area locally, meaning that for any Σ̃k such that K := Σ∆Σ̃ is compact we have

Hk(Σ ∩K) ≤ Hk(Σ′ ∩K).

This must be assumed to hold locally, since one can show that the total area of Σ must be

infinite (precisely as a consequence of the monotonicity that we are going to show).

Given a point p ∈ Rn, not necessarily belonging to Σ, and given r > 0, we can consider

the intersection Γp,r := Σ ∩ ∂Br(p) of Σ with the sphere of center p and radius r. This is an

embedded (k − 1)-dimensional submanifold by Sard, for a.e. r > 0. Moreover, using the

coarea formula, we can check that

Hk−1(Γp,r) ≤ f ′(r), where f(r) := Hk(Σ ∩Br(p)),

and equality holds precisely when Σ meets the sphere orthogonally.

Now, inside the ball, we can replace Σ with the cone over Γp,r (with tip p). This is the

place where the argument is sloppy, since the new object is no longer a smooth submanifold,

although it becomes rigorous when Σ is an area-minimizing integral current.

The cone has area r
kH

k−1(Γp,r). By minimality, we get

f(r) ≤ r

k
Hk−1(Γp,r) ≤

r

k
f ′(r),

which means that
d

dr

f(r)

rk
≥ 0 for a.e. r,

and hence r 7→ f(r)
rk

is increasing.

In general, at least for small r > 0, we can approximate the characteristic function of the

ball Br(p) by taking a smooth decreasing function ϕ : [0,∞) → R with 0 ≤ ϕ ≤ 1[0,1], equal

to 1 near the origin, and by looking at ϕ(
dp(x)

r ), where dp is the distance function from p.

The previous comparison argument suggests testing the stationarity δV = 0 by using

radial vector fields, which would leave V intact precisely when it is already conical. Namely,

we take

X := (ϕ ◦ dp)∇
d2p
2
.
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In Rn we simply have ∇d2p
2 (x) = x− p; integrating the resulting equation between r = a

and r = b, and letting ϕ → 1[0,1], we arrive at the following identity, called monotonicity

formula:

|V |(Bb(p))

bk
=

|V |(Ba(p))

ak
+

∫
Grk(Bb(p)\Ba(p))

|∇P⊥
dp|2

dkp
dr,

where ∇P⊥
dp is the projection of ∇dp onto P⊥. As the name suggests, an immediate

corollary is the fact that

r 7→ |V |(Br(p))

rk

is an increasing function of r > 0.

Exercise 3.7. Show the previous identity in Rn.

On a Riemannian manifold, error terms appear because of the ambient curvature. However,

we can reach a similar monotonicity formula of the form

eCb |V |(Bb(p))

bk
≥ eCa |V |(Ba(p))

ak
+

∫
Grk(Bb(p)\Ba(p))

|∇P⊥
dp|2

dkp
dr,

and thus the quantity eCr |V |(Br(p))
rk

is increasing.

In particular, the density

Θk(|V |, p) = lim
r→0

|V |(Br(p))

ωkrk

exists at all points p ∈ M . In Rn, for the rescaled varifold (δp,r)∗V , we then have

lim
r→0

|(δp,r)∗V |(BR(0)) = lim
r→0

|V |(BRr(p))

rk
= Θk(|V |, p) · ωkR

k < ∞

for any given R > 0. Note that we do not need to divide by rk in the left-hand side, since

this normalization factor is already given by the Jacobian in the definition of varifold

pushforward. Thus, for any sequence rj → 0, a limit varifold limj→∞(δp,rj )∗V always exists

along a subsequence, by the usual compactness of Radon measures. Such a limit is called a

blow-up at p; it might depend on the sequence rj → 0 in general.

We can do the same in a Riemannian manifold (Mn, g), using normal coordinates at p.

Such a blow-up W is now a stationary varifold in TxM ∼= Rn, even if V is initially defined

on M .

The following exercises contain observations which will be crucially important in the

sequel.
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Exercise 3.8. For such a blow-up W , show that |W |(BR(0))
ωkRk = Θk(|V |, p) for all R > 0, so

that in particular Θk(|W |, 0) = Θk(|V |, p). Show also that

Θk(|W |, x) ≤ |W |(BR(x))

ωkRk
≤ Θk(|W |, 0)

for all x ∈ Rn and R > 0. [Hint: consider a very large ball BR′(x) and the ball BR′+|x|(0)

including it, and apply monotonicity with center x.]

In particular, for a blow-up W , the monotonicity formula with center 0 is saturated,

in the sense that the inequality |W |(Bb(0))
bk

≥ |W |(Ba(0))
ak

becomes an equality, for all radii

0 < a < b. The monotonicity formula then tells us that ∇P⊥
d0(x) = 0 for W -a.e. (x, P )

with x ̸= 0. Since d0(x) = |x|, we obtain that ∇d0(x) =
x
|x| ⊥ P⊥, or in other words x ∈ P ,

for W -a.e. (x, P ). Since this is a closed condition, we deduce the following.

Corollary 3.9. For a blow-up W we have x ∈ P for all (x, P ) ∈ spt(W ).

This suggests that W is a cone, matching the equality case in the heuristic proof of

monotonicity seen before. We will confirm this later on, for stationary varifolds with density

≥ 1 on the support.

Exercise 3.10. Using the monotonicity formula, show that for a stationary varifold V the

density is upper semicontinuous, namely

Θk(|V |, p) ≥ lim sup
j→∞

Θk(|V |, pj)

whenever pj → p (in other words, sublevel sets of the form {p ∈ M : Θk(|V |, p) < λ} are

open).

Example 3.11. A simple example where continuity of the density fails is given by two

crossing lines in R2, with multiplicity one. This is a stationary varifold whose density is 2 at

the intersection of the two lines and 1 at all other points (in the union of the two lines).

Exercise 3.12. Assume that Vj ⇀ V for a sequence of stationary varifolds with density ≥ 1

on their supports. Show that we have a sort of “upper semicontinuity of the support”: if

pj → p and pj ∈ spt |Vj |, then p ∈ spt |V | and in fact Θk(|V |, p) ≥ 1. As a consequence,

spt |Vj | → spt |V | locally in the sense of Hausdorff convergence (i.e., given any compact

set K and ε > 0, eventually spt |Vj | ∩K is included in the ε-neighborhood of spt |V | and
spt |V | ∩K is included in the ε-neighborhood of spt |Vj |).
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3.3. Rectifiable varifolds and rectifiability criterion for stationary varifolds. As

we did for currents, we can single out two important classes of varifolds: rectifiable and

integral ones. We say that a k-dimensional varifold V is rectifiable if its weight |V | is a
k-rectifiable measure and moreover we have the disintegration

dV (x, P ) = d|V |(x)⊗ δTx|V |(P ),

where Tx|V | is the tangent space of the rectifiable measure, as discussed in the first lecture

(it is defined for |V |-a.e. x). Thus, besides rectifiability of the projected measure π∗V = |V |
on the base M , the definition of rectifiable varifold also requires that at any point x ∈ M

“only the k-plane Tx|V | is important.” Note that there is a one-to-one correspondence

between k-rectifiable measures and k-dimensional rectifiable varifolds.

Exercise 3.13. Working on Rn for simplicity and letting δx,r(y) :=
y−x
r , as usual, the second

condition above is equivalent to the fact that, for |V |-a.e. x, we have

lim
r→0

(δx,r)∗V = Θk(|V |, x) · Tx|V |

as Radon measures, where in the right-hand side we identify the plane Tx|V | with the

associated k-dimensional varifold of multiplicity 1 (this can be seen using the fact that, in a

general disintegration as above, b 7→ αb is approximately weak-∗ continuous at a.e. b).

Example 3.14. Given a k-dimensional rectifiable current T , associated to a k-rectifiable

(Borel) set S, a multiplicity ν : S → (0,∞), and an orientation τ , we can always form a

k-dimensional rectifiable varifold V simply by forgetting the orientation: we let

dV (x, P ) = d(Hk S)(x)⊗ δx(TxV ).

Conversely, to pass from a rectifiable varifold to a rectifiable current, we have to choose an

orientation at every point (obtaining the same current if the two choices agree a.e.).

Example 3.15. In the previous example concerning the different ideas of convergence for

currents and varifolds, the limit is not stationary: even if its weight is 1-rectifiable, at every

point x the probability measure αx is the uniform measure on the Grassmannian factor,

thus giving “equal importance” to all lines.

The following is an important rectifiability criterion for varifolds, due to Allard. As

already mentioned, differently from the case of currents (where we should rather hope that

our current is a limit of integral currents), the density assumption can often be checked in

practice.
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Theorem 3.16 (rectifiability criterion for varifolds). If V is a k-dimensional stationary

varifold such that Θ∗
k(|V |, x) > 0 for |V |-a.e. x ∈ M , then V is rectifiable. The same holds

more generally if V is not stationary but has locally bounded first variation.

Remark 3.17. In the stationary case, the upper density Θ∗
k(|V |, x) is in fact the density

Θk(|V |, x), which exists at every point as a consequence of the monotonicity formula.

Exercise 3.18. Show with a counterexample that the analogous statement for currents is

false: in R2 there exists a sequence of 1-dimensional rectifiable currents Tj ⇀ T∞ with

∂Tj = 0 and Θ1(|Tj |, x) ≥ 1 at every point x ∈ spt |Tj |, but such that T∞ is not rectifiable.

Exercise 3.19. Assume that Vj ⇀ V , for a sequence of stationary rectifiable varifolds Vj

satisfying Θk(|Vj |, x) ≥ θ0 at all x ∈ spt |Vj |, for some constant θ0 > 0 independent of j.

Show that the limit V is stationary and rectifiable, as well.

We are going to give two different proofs, since both of them are quite instructive (in

some more general situations, a mix of both could be needed).

First proof of Theorem 3.16. We just sketch a proof in the stationary case, in Rn. Because

of the more general rectifiability criterion for measures discussed in the first lecture (due to

Marstrand–Mattila), it suffices to show the following: for |V |-a.e. point x, for any limit of

the form

Ṽ = lim
j→∞

(δx,rj )∗V

as Radon measures on the Grassmannian bundle, we have Ṽ = Θk(|V |, x) ·P for some plane

P , depending on x and possibly also on the sequence rj → 0. Here Θk(|V |, x) · P denotes

the varifold associated to P , with constant multiplicity Θk(|V |, x).
This claim will be obtained by looking at those points x satisfying a carefully chosen list

of requirements. Namely, we consider a point x0 ∈ Rn such that:

• Θk(|V |, x0) > 0;

• x0 is an approximate continuity point for the function x 7→ Θk(|V |, x);
• the limit |V |(Br(x))

ωkrk
→ Θk(|V |, x) is approximately uniform near x0.

It is important to clarify the precise meaning of each requirement:

• we have Θk(|V |, x0) = limr→0
|V |(Br(x0))

ωkrk
> 0;

• given any ε, ε′ > 0, the set {x ∈ Br(x0) : |Θk(|V |, x) − Θk(|V |, x0)| > ε} has

|V |-measure at most ε′|V |(Br(x0)) for r > 0 small enough, depending on ε, ε′

(because of the previous assumption, we could equivalently require that the measure

of this bad set is at most ε′rk);
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• given any ε, ε′ > 0, there exists ρ > 0 (depending on ε) such that, letting

G :=
{
x :

∣∣∣ |V |(Bs(x))

ωksk
−Θk(|V |, x)

∣∣∣ ≤ ε for all 0 < s ≤ ρ
}
,

we have

|V |(Br(x0) \G) ≤ ε′|V |(Br(x0)).

Even if it looks rather restrictive at first glance, the previous list of requirements is

still generic, in the sense that |V |-a.e. point x0 satisfies it. Let us focus on the last one,

which is the only one whose genericity is not a priori clear: working on a bounded set K,

note that (by Egorov’s lemma) we can find a set Kε ⊆ K and a radius ρε > 0 such that

| |V |(Br(x))
ωkrk

−Θk(|V |, x)| ≤ ε for all x ∈ Kε and 0 < r ≤ ρε, with |V |(K \Kε) ≤ ε. Then, for

any ℓ ∈ N, any Lebesgue density point of the set
⋂

j≥ℓK2−j (with respect to the measure

|V |) will work, and moreover as ℓ ∈ N varies these sets cover K except for a |V |-negligible
set.

Having established that a.e. point x0 satisfies the previous assumptions, we now fix any

such point x0. Recall that, for any sequence rj → 0, a limit limj→∞(δx,rj )∗V always exists

along a subsequence. Thus, considering a limit

Ṽ = lim
j→∞

(δx0,rj )∗V

along a fixed sequence rj → 0, it suffices to show that Ṽ = θ0 · P for a suitable k-plane P ,

where θ0 := Θk(|V |, x0).
As we saw before, since Ṽ arises as a blow-up of a stationary varifold, we have

y ∈ P for all (y, P ) ∈ spt(Ṽ ).

Also, from the second and third items above, it is easy to check that

Θk(|Ṽ |, x̃) = θ0 for all x̃ ∈ spt |Ṽ |.

As we saw in a previous exercise, this implies that the ratio |Ṽ |(BR(x̃))
Rk is constant in R > 0,

and this tells us that Ṽ resembles a cone, with respect to any point x̃ ∈ spt |Ṽ | =: S: namely,

as above, we have

y − x̃ ∈ P for all (y, P ) ∈ spt(Ṽ ).

Since 0 ∈ spt |Ṽ |, we can find a plane P0 such that (0, P0) ∈ spt(Ṽ ). Taking y := 0 and

letting x̃ vary, we obtain −x̃ ∈ P0 for all x̃ ∈ S, and hence

S ⊆ P0.

Thus, |Ṽ | is supported on P0. By the constancy theorem (see the exercise below), it is a

constant multiple of this plane. □
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Exercise 3.20. Complete the previous sketch.

Remark 3.21. The third requirement in the list could be omitted when we deal with the

simpler case of a stationary varifold, since the second requirement already implies the

inequality Θk(|Ṽ |, ·) ≥ θ0 on spt |Ṽ |, by upper semicontinuity of the density along sequences

of stationary varifolds, while the reverse inequality follows from the fact that Ṽ is a blow-up.

However, it is useful to treat the general case (where none of the rescalings (δx,r)∗V is

stationary).

Remark 3.22. In the general case, a more general version of the monotonicity formula can

be used to obtain Θ∗
k(|V |, x) < ∞ for |V |-a.e. x. Moreover, we can still guarantee that the

blow-up Ṽ is stationary: in fact, a covering argument shows that lim supr→0
η(Br(x))
|V |(Br(x))

< ∞
for |V |-a.e. x, where η is the absolute value of the first variation of V , and it suffices to

observe that the first variation of (δx,r)∗V is given by r1−k(δx,r)∗η, whose mass is then

infinitesimal on any given compact set (we do not use the notation δV for the first variation

in order not to confuse it with the rescaling).

Exercise 3.23. Show the constancy theorem: given a connected, embedded C2-smooth

k-dimensional submanifold Σk ⊂ U and a k-dimensional stationary varifold whose weight is

supported on Σ in the open set U , prove that this varifold is a constant multiple of Σ in U .

[Hint: test the stationarity with a vector field of the form ∇f2, where f is a C2 function

vanishing on M .]

Second proof of Theorem 3.16. Again, we just sketch a proof in the stationary case, in Rn.

We want to apply the first, more classical rectifiability criterion for measures discussed in

the first lecture. It suffices to show the following: for |V |-a.e. point x there exists a plane Px

such that

(δx,r)∗V ⇀ Θk(|V |, x) · Px

as Radon measures on the Grassmannian bundle, where the right-hand side is the varifold

associated to the plane Px, with constant multiplicity Θk(|V |, x).
This claim will be obtained by looking at those points x satisfying the following require-

ments. Calling dV (x, P ) = d|V |(x)⊗ αx(P ) the disintegration of V , we consider a point

x0 ∈ Rn such that:

• Θk(|V |, x0) > 0;

• x0 is an approximate continuity point for the function x 7→ αx.

The second requirement means that, for any continuous function φ : Grnk → R, the point x0

is an approximate continuity point (as in the previous proof) for the function x 7→
∫
Grnk

φdαx.
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It is satisfied by a.e. point: it suffices to take x0 to be an approximate continuity point for

the previous function, for each φ in a countable, dense family of functions.

We now fix any such point x0 and a limit

Ṽ = lim
j→∞

(δx0,rj )∗V

along a fixed sequence rj → 0. We claim that Ṽ = θ0 · Px0 for a plane Px0 independent of

the sequence, where θ0 := Θk(|V |, x0). By the second assumption, it is easy to see that we

can write

dṼ (x, P ) = d|Ṽ |(x)⊗ α(P ),

where α is actually equal to the probability measure αx0 from the disintegration of V , at

the point x0. In other words, Ṽ has “constant Grassmannian part.”

Moreover, as we saw before, since Ṽ arises as a blow-up of a stationary varifold, we have

y ∈ P for Ṽ -a.e. pair (y, P ).

Since the condition y ∈ P is a closed one, it then holds for all pairs (y, P ) ∈ spt(V ). In

particular, recalling that V = |V | ⊗ α, we obtain that y ∈ P for all y ∈ spt |V | =: S and all

P ∈ spt(α).

Thus, fixing P0 ∈ spt(α), we obtain that

S ⊆ P0.

The constancy theorem tells us that S is a constant multiple of P0. This multiple is θ0,

since Θk(|Ṽ |, 0) = Θk(|V |, x0) = θ0.

In particular, we obtain P0 = S. Thus, the support of α is the singleton {S}, or equivalently
α = δS . Since α = νx0 is independent of the particular sequence rj → 0, we obtain that the

plane S is also independent of the sequence. □

3.4. Compactness of rectifiable and integral varifolds. As seen in a previous exercise,

from the previous result, it follows immediately that if we have a sequence of k-dimensional,

rectifiable, stationary varifolds Vj ⇀ V with Θk(|Vj |, ·) ≥ θ0 on the support of |Vj | for some

θ0 > 0 independent of j, then V is also rectifiable and stationary, since the same density

lower bound holds for this limit varifold (in fact, rectifiability of each Vj is automatic for

the same reason). In fact, we could state the following compactness result.

Theorem 3.24 (compactness of rectifiable varifolds). Given a sequence (Vj) of

k-dimensional rectifiable varifolds with locally bounded first variation, obeying uniform local
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bounds of the form

sup
j

|Vj |(K) < ∞, sup
j

|δVj |(K) < ∞

for any compact set K, as well as Θ∗
k(|Vj |, x) ≥ θ0 for |Vj |-a.e. point x (with θ0 > 0

independent of j), we can extract a subsequence converging to a rectifiable varifold V with

locally bounded first variation and the same lower density bound |V |-a.e.

The fact that a limit exists along a subsequence and has locally finite first variation follows

from the usual compactness property of Radon measures. The rectifiability of V follows

from the criterion shown before, once we obtain the density lower bound (for the same

reason, it holds automatically for each Vj and does not need to be assumed). The actual

content of this statement is that we still have Θ∗
k(|V |, x) ≥ θ0 for |V |-a.e. x. Essentially, the

proof is similar to the stationary case, but more technical.

Example 3.25. In the previous example where each Vj is a union of j circles of radius ≃ 1
j ,

the mean curvature is of order ≃ j (the inverse of the radius). In order to get the total mass

of the first variation, we need to multiply this by the total length, which is ≃ j · 1
j = 1.

Thus, the first variation δVj has total mass ≃ j · 1, which blows up (and, indeed, the limit

varifold is not rectifiable).

More interestingly, we also have a compactness theorem for integral varifolds, again due

to Allard. A k-dimensional varifold V is integral if Θ∗
k(|V |, x) ∈ N \ {0} for |V |-a.e. x.

Theorem 3.26 (compactness of integral varifolds). Given a sequence (Vj) of k-

dimensional integral varifolds with locally bounded first variation, obeying uniform local

bounds of the form

sup
j

|Vj |(K) < ∞, sup
j

|δVj |(K) < ∞

for any compact set K, we can extract a subsequence converging to an integral varifold V

with locally bounded first variation.

We can assume that we are in an open set of Rn, up to embedding M isometrically in a

Euclidean space (this can be shown to preserve the assumptions). Since Θk(|Vj |, x) ≥ 1 for

|Vj |-a.e. x, the fact that V is rectifiable follows already from the compactness of rectifiable

varifolds. To show that the limit has integer density a.e., we can look at a (generic) point

where V blows up to a plane. By a diagonal argument (suitably rescaling each Vj), we can

in fact assume that

V = θ · P



13

for a constant θ ≥ 1 and a plane P . We denote by πP : Rn → P the orthogonal projection

onto P . The task now is to show that θ ∈ N.
Assuming each Vj to be stationary for simplicity, the original proof by Allard is based on

the following observation: for y ∈ P , one can show that the typical fiber spt |Vj | ∩ π−1
P (y)

consists of finitely many points x1, . . . , xℓ. Assuming, for the sake of illustration, that ℓ = 2,

for radii r ≲ |x1 − x2| one can show that eventually

|Vj |(Br(x1) ∪Br(x2)) ≥ (θ(1) + θ(2) − ε)ωkr
k,

where θ(i) := Θk(|Vj |, xi) ∈ N (for r ≤ |x1−x2|
2 as a consequence of monotonicity and for

r ≃ |x1−x2| as a consequence of the fact that, by the convergence Vj ⇀ θ ·P and a covering

argument, for a typical choice of y the varifold Vj π−1
P (Br(y)) looks “almost flat” for all

r ∈ (0, 1)). At a larger scale r ≫ |x1 − x2|, the two points x1 and x2 essentially look like a

single point, and one can conclude that the previous lower bound holds eventually, for any

r > 0. Thus, we obtain

θ =
|V |(π−1

P (Br(y)))

ωkrk
= lim

j→∞

|Vj |(π−1
P (Br(y)))

ωkrk
≥ lim

j→∞
(θ(1) + θ(2)) ∈ N.

The latter must be almost an equality at the typical point y, since letting θj(y) :=∑
x∈π−1

P (y)Θk(|Vj |, x) we have

1

ωk

∫
P∩B1(0)

θj(y) dHk(y) → θ,

giving θ ≈ θj(y) ∈ N.
Another proof, again due to Allard, appeared later on. It is based on the observation that

the density θj(y) of the projected measure (πP )∗|Vj | is close to an integer at many points y

and, since Vj has locally bounded first variation, its differential dθj : P → Rk can be shown

to satisfy

dθj → 0 in W−1,1
loc ,

i.e., goes to zero in a rather weak sense (namely, in a negative Sobolev space). Then Allard

proved a result which became known as the strong constancy lemma, asserting that this

guarantees that θj is (locally) L1-close to its average. Since this average converges to θ,

we obtain again θ ≈ θj(y) for many points y, and thus θ ∈ N. This idea, as well as the
constancy lemma itself, proved useful in many other situations.

3.5. Tangent cones. We now make a few more fundamental observations about blow-ups

of stationary integral varifolds, starting from a simple exercise.
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Exercise 3.27. Show that for an integral varifold V we have Θk(|V |, x) ≥ 1 at each point

x ∈ spt |V |.

Recall that, given x0 ∈ spt |V |, we can consider a blow-up W , which is now a stationary

varifold in Tx0M
∼= Rn and moreover satisfies

|W |(BR(0))

ωkRk
= Θk(|V |, x0) for all R > 0.

Hence, it saturates the monotonicity property of the area ratio, giving

x ∈ P for all (x, P ) ∈ spt(W ).

We now show rigorously that any blow-up W is a cone.

Proposition 3.28 (conicality of blow-ups). A blow-up W of a stationary integral

varifold is a cone, in the sense that it is dilation-invariant: we have (δ0,ρ)∗W = W for all

ρ > 0.

Proof. Since W is a limit of rescalings of V , which are stationary integral varifolds, it is itself

stationary and integral by the compactness theorem; in fact, we will just need rectifiability

of W here, which follows from the more elementary compactness theorem for rectifiable

varifolds.

Since a rectifiable varifold is uniquely determined by its weight, it suffices to see that

|(δ0,ρ)∗W | = |W | for all ρ > 0.

In other words, given any χ ∈ C1
c (Rn), we claim that∫

Rn

χd|(δ0,ρ)∗W | =
∫
Rn

χd|W |.

To show this, consider the position vector field X(x) := x. Its flow (ΦX
t )t∈R is given by

dilations, namely ΦX
t (x) = etx. Hence,

d

dρ

∫
Rn

χd|(δ0,ρ)∗W |
∣∣∣
ρ=et

= e−t d

dt

∫
Rn

χd|(ΦX
t )∗W |.

For t = 0 (corresponding to ρ = 1), we easily compute that the previous expression equals∫
Rn

[⟨∇χ,X⟩(x) + divPx X(x)] d|W |(x),

where Px denotes the tangent plane to W (or, equivalently, |W |) at |W |-a.e. x. We

claim that this vanishes. Since the next argument can be applied also to the rescalings

(ΦX
t )∗W = (δ0,et)∗W in place of W , we conclude that

∫
Rn χd|(δ0,ρ)∗W | is constant in ρ, as

we wanted.
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As seen earlier, we have

x ∈ Px for |W |-a.e. x.

Now the vector field X̃ := χX has

divP X̃ = ⟨πP (∇χ), πP (X)⟩+ χdivP X = ⟨∇χ, πP (X)⟩+ χdivP X

for any k-plane P . Since W is stationary, taking P := Px, the latter integrates to zero

against the weight |W |. On the other hand, since X(x) = x ∈ Px, we have πPx(X) = X at

a.e. x. This proves our claim. □

For this reason, blow-ups of a stationary integral varifold are called tangent cones. We

conclude this part with two more observations. As already observed while proving the

rectifiability criterion, if we have the equality Θk(|W |, x̂) = Θk(|W |, 0) for another point x̂,
then in fact W is a cone also with respect to the new center x̂ (i.e., if we translate W by

the vector −x̂, we obtain again a cone). Indeed, recall that in this case we have the constant

ratio |W |(BR(x̂))
ωkRk = Θk(|W |, 0) for all R > 0.

As a consequence, we have conical invariance with respect to the two different points 0

and x̂. Intuitively, this gives us a translation invariance along the direction x̂. And indeed,

for |W |-a.e. x we have both

x ∈ Px, x− x̂ ∈ Px.

Thus, x̂ ∈ Px for a.e. x. By the same technique used in the previous proof, this implies

that W is invariant under translations by multiples of x̂. Thus, assuming that x̂ = e1 up to

rotations, we can write

W = R×W ′,

where W ′ is an integral varifold in Rn−1.

Exercise 3.29. Check that W ′ is still stationary.

While this observation is very useful in many situations, we will actually need a similar

one, easier to prove.

Exercise 3.30. Given any x̂ ∈ spt |W | \ {0}, with a possibly different density compared to 0,

any blow-up of W at x̂ is translation invariant in the direction x̂.

3.6. Regularity of area-minimizing currents in codimension one by dimension

reduction. We have seen at the end of the previous lecture how the Plateau problem

admits a solution in the class of integral currents. We now give some hints about how one

obtains regularity of area-minimizing currents T in codimension one, at least far from the

(assigned) boundary ∂T , namely how one reaches the following theorem, which comes from
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the subsequent efforts of many mathematicians and is one of the cornerstones of geometric

measure theory.

Theorem 3.31 (regularity theorem for area-minimizing currents in codimension

one). Given a Riemannian manifold (Mn, g) and an (n− 1)-dimensional integral current

T in M , assume that T is area-minimizing in an open set U ⊂ M , meaning that

M(T ) ≤ M(T ′) whenever T ′ − T = ∂S

for some integral current S compactly supported in U . Then T is a smooth hypersurface, with

locally constant multiplicity, away from a closed set S(T ) ⊆ spt |T | of Hausdorff dimension

at most n− 8.

We assume n ≥ 3 in the sequel, since the case n = 2 is quite elementary. The set S(T ) is
called the singular set. The previous theorem essentially asserts that S(T ) is very small,

and actually S(T ) = ∅ when n ≤ 7. This result is optimal, as the next example shows. It is

called the Simons cone, since it was initially proposed by Simons.

Example 3.32. Let Γ := 1√
2
· (S3×S3) ⊂ R4×R4 = R8, which is a 6-dimensional manifold

sitting inside the sphere S7. Taking T to be the cone over Γ, it was proved by Bombieri–De

Giorgi–Giusti that T is area-minimizing in the unit ball. In this case S(T ) = {0} has

Hausdorff dimension 0, matching what the previous statement predicts.

To obtain the regularity theorem, the starting point is to realize that we can assume that

T is the boundary of a finite perimeter set, and thus has multiplicity 1 at almost every

point. Indeed, recall that in codimension one any integral current can locally be written as a

superposition of boundaries of nested finite perimeter sets; it is then easy to see that if T is

area-minimizing then each of these boundaries must be area-minimizing as well. Once the

regularity theorem is proved for each of these, we notice that two such boundaries either

coincide or must be disjoint, since locally they are graphs solving a scalar elliptic PDE (and

the maximum principle prevents two solutions u1 ≤ u2 “touching” each other tangentially).

In the sequel, we can then assume that T has multiplicity 1 a.e. We can immediately

define Σ to be the smallest closed set on whose complement regularity holds, so that our

task is now to show that Σ has Hausdorff dimension at most n− 8.

One of the fundamental tools in the proof is a result giving an effective criterion

guaranteeing that a point x ∈ spt |T | belongs to the regular set spt |T | \ S(T ). Essentially, it
requires that T is almost flat around x. Since T is rectifiable, this result applies at a.e. x

and immediately shows that S(T ) is negligible, i.e.,

Hn−1(S(T )) = 0.



17

While this still looks very far from what we want to show, the same tool can be applied in

a more clever way to reach the stronger conclusion that S(T ) has Hausdorff dimension

≤ n− 8.

Theorem 3.33 (Allard’s regularity theorem). For every n ≥ 2 there exists a small

constant c(n) such that the following holds. If V is a k-dimensional integral stationary

varifold in a ball Br(x) ⊂ Rn, with x ∈ spt |V | and mass

|V |(Br(x)) ≤ (1 + c(n))ωkr
k,

then on the smaller ball Br/2(x) the varifold V is given by a smooth graph of multiplicity 1.

The conclusion says that we can find a k-dimensional plane P and a smooth function

f : P → P⊥ such that V agrees with the graph of f (a subset of Rn), on the ball

Br/2(x). In fact, given any ℓ ≥ 0 and ε > 0, we can find δ(n, ℓ, ε) > 0 such that if

|V |(Br(x)) ≤ (1 + δ)ωkr
k then ∥f∥Cℓ ≤ ε.

Roughly speaking, the proof is based on an improvement of flatness: if V looks almost

flat at a given scale, then it looks even flatter at a smaller scale. This is essentially due to

the fact that, if V is already a smooth graph, it satisfies the minimal submanifold equation,

which in codimension one (for functions u : Rn−1 → R) reads

div
( ∇u√

1 + |∇u|2
)
= 0.

Thus, when ∇u is small, we expect u to behave like a solution to the linearized equation

(linearized around u0 = 0), which is just the Laplace equation ∆u = 0, whose solutions do

enjoy such improvement of flatness.

Assuming x = 0, the proof consists of the following steps:

• the assumption implies that V is close to saturating the monotonicity formula, with

Θk(|V |, 0) ≈ 1; thus, by a soft compactness argument, using upper semicontinuity of

the support along limits of stationary varifolds, |V | is close to the measure Hk P ,

for a certain k-plane P , on a smaller ball B3r/4(0), and here spt |V | is close to P in

the Hausdorff topology (this is a sort of C0 bound);

• we approximate V with the graph of a suitable Lipschitz function f , by looking at

the “good set” G of points x′ such that the excess

E(Bs(x
′), P ) := s−k

∫
Bs(x′)

∥πTy |V | − πP ∥2 d|V |(y)

is small at all scales s ∈ (0, r) and showing that these indeed belong to a graph with

a small Lipschitz constant (there are plenty of such points thanks for a covering

argument);
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• we transfer stationarity from V to f , showing that f “almost satisfies” the minimal

submanifold equation, in a weak sense, and actually that the “vertically rescaled”

function

f̃ :=
f − a√∫

|df |2

(where a is the average of f) “almost satisfies” the Laplace equation, again in a

weak sense (essentially, ∆f̃ is small in a negative Sobolev space);

• we deduce an improvement of flatness for f̃ : there exists a linear map ℓ : Rk → Rn−k

such that
1

(ρs)k

∫
Bρs

|df̃ − ℓ|2 ≤ 1

2
· 1

sk

∫
Bs

|df̃ |2

for some ρ = ρ(n) ∈ (0, 1) (we identify the domain of f̃ with the ball B3r/4(0) ⊂ Rk),

by a simple compactness argument, exploiting the fact that f̃ is normalized and

that W 1,2 compactly embeds in L2, and thus f̃ is L2-close to a harmonic function,

for which the previous inequality is easily obtained (more precisely, for f̃ we get an

L2 version of this, after which a Caccioppoli-type bound is used);

• we transfer this information back to V , obtaining that the excess decays in an

analogous way: for a new plane P ′ we have

E(Bρs(0), P
′) ≤ 1

2
E(Bs(0), P );

• replacing x = 0 with the other points y ∈ spt |V | ∩Br/2(0) and applying this result,

we see that in fact G ⊇ spt |V | ∩Br/2(0);

• the previous excess decay says that f ∈ C1,α on Br/2(0) for some α = α(n), and

now it is easy to conclude using standard bootstrap techniques for elliptic PDEs.

In the sequel, assume that T is an integral area-minimizing (n− 1)-current in the unit

ball B1(0) ⊂ Rn, with multiplicity 1 and ∂T = 0 (in B1(0)). It is easy to check that the

associated varifold is stationary and integral. Hence, as already mentioned before, we deduce

the following.

Corollary 3.34 (regularity at density one points). We have Θn−1(|T |, x) ≥ 1 for all

x ∈ spt |T | and if Θn−1(|T |, x) < 1 + c(n) then x ̸∈ S(T ). Thus,

S(T ) = {x ∈ B1(0) : Θn−1(|T |, x) > 1} = {x ∈ B1(0) : Θn−1(|T |, x) ≥ 1 + c(n)}.

In particular, S(T ) is |T |-negligible, and thus Hn−1-negligible.

As discussed before, we can also assume that T is the boundary of a finite perimeter set.

By compactness results for BV functions (similar to Rellich–Kondrachov), this is easily seen
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to imply that multiplicity 1 is preserved by taking limits: essentially, this holds because the

limit current is the boundary of a finite perimeter set, as well. We immediately deduce the

following fundamental fact, which is peculiar of the codimension-one setting.

Proposition 3.35 (persistence of singularities). If (Tj) is a sequence of area-minimizing

currents of multiplicity 1 in B1(0), with supj M(Tj) < ∞ and 0 ∈ S(Tj) for all j, then we

can extract a limit area-minimizing current T of multiplicity 1 (along a subsequence) with

0 ∈ S(T ).

Proof. The existence of a limit of multiplicity 1 is granted by the compactness theorem of

integral currents and the previous observation (actually, it follows in a much more elementary

way from compactness results for BV functions). The fact that 0 ∈ spt |T | requires some

care, since a priori we could have cancellations. It will follow from the monotonicity formula

(as the upper semicontinuity of the support for converging stationary integral varifolds)

once we show that |Tj | ⇀ |T |.
Assume that the measures |Tj | converge to a limit µ, up to extracting a subsequence. It

is clear that |T | ≤ µ, by lower semicontinuity of mass for currents. Assume that eventually

|T |(Bσ(x)) ≤ |Tj |(Bρ(x))− δ,

for some x ∈ B1(0) and two fixed radii 0 < ρ < σ < 1 − |x| and δ > 0. Since weak

convergence is equivalent to convergence in the flat metric, we could find a fixed radius

r ∈ (ρ, σ) such that the (n− 2)-cycle Sj := (Tj −T )∩ ∂Br(0) (more rigorously, the r-slice of

Tj with respect to the function x 7→ |x|) has mass converging to zero, along a subsequence.

Thus, eventually Sj = ∂Rj for an integral current Rj on the sphere ∂Br(x), of vanishing

mass M(Rj) → 0. We can then replace Tj with the (n− 1)-cycle

T ′
j := 1Br(x)T +Rj + 1B1(0)\Br(x)Tj .

Since it differs from Tj by a cycle compactly supported in B1(0), it differs by a boundary.

Hence, by the minimality assumption, M(T ′
j) ≥ M(Tj). Thus, |T |(Br(x)) + M(Rj) ≥

|Tj |(Br(x)). However, this contradicts the fact that |T |(Br(x)) ≤ |Tj |(Br(x))− δ for j large.

This implies that |T |(Bσ(x)) ≥ µ(Bρ(x)) for all radii as above, which easily gives |T | ≥ µ

and thus |T | = µ, as claimed.

If we had Θn−1(|T |, 0) < 1 + c(n), then |T |(B̄r(0)) < (1 + c(n))ωn−1r
n−1 for r > 0 small

and thus, by the previous convergence |Tj | ⇀ |T |, the same would hold for Tj , for j large

enough, implying that 0 ̸∈ S(Tj), a contradiction. □

Exercise 3.36. Complete the previous proof by showing the existence of the radius r ∈ (ρ, σ)

in the contradiction argument.
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Exercise 3.37. Show that the limit current is still area-minimizing.

Example 3.38. The previous persistence of singularities is the core tool used in the

dimension reduction argument explained below. Unluckily, this fails in codimension higher

than one. As an example, the complex submanifold

T := {(z, w) ∈ C× C = R4 : z2 = w3}

(with multiplicity 1) is an area-minimizing 2-dimensional current in R4; in fact, it can be

shown that any complex submanifold of Cn is area-minimizing. Its singular set is the origin,

but when we consider a sequence of rescalings (δ0,rj )∗T with rj → 0 we obtain the plane

{z = 0} with multiplicity 2 in the limit. Thus, multiplicity can increase and we can obtain

a limit with empty singular set. This is one of the reasons why the regularity theory in

codimension higher than one is way more difficult and leads to weaker results (the dimension

of the singular set of an area-minimizing k-current is at most k − 2, which is sharp as this

example shows).

The idea of the so-called dimension reduction is to exploit this persistence of singularities

under limits, in conjunction with the previous observation that when we blow-up at a given

point we get a cone, and if we further blow-up at a point x̂ ̸= 0 we gain a symmetry by

translations. Thus, we obtain an area-minimizing cone T ′ which splits a line: we can write

T ′ = R× C up to rotations, with C an area-minimizing cone in Rn−1. We can repeat this

procedure, lowering the dimension of C until the singular set is just the origin.

Let us make this rigorous. We aim at showing the following result.

Theorem 3.39 (dimension reduction). If S(T ) has Hausdorff dimension > ℓ ∈ N,
then there exists an area-minimizing cone T ′ of the form T ′ = Rℓ+1 × C, where C is

an area-minimizing cone in Rn−ℓ−1 with S(C) ̸= ∅. Moreover, up to increasing ℓ in this

conclusion, we can assume that C is smooth outside of the origin.

In the previous sketch, the main concern is being able to retain a substantial singular

set after each blow-up. Indeed, even if the rescalings of S(T ) converge with respect to the

Hausdorff convergence of closed sets, the Hausdorff dimension could drop in the limit. To

prevent this, we use the following tool.

Proposition 3.40. If Ha(S) > 0 for a set S ⊆ B1(0), then there exists a point x ∈ S such

that

lim sup
r→0

Ha
∞(S ∩ B̄r(x))

ra
≥ 2−a.
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The reason why we use the outer measure Ha
∞ (introduced before defining the Hausdorff

measure) instead of Ha is explained in the following exercise.

Exercise 3.41. Assume that we have the Hausdorff convergence of (relatively) closed sets

Sj ⊂ B1(0) to S∞ ⊂ B1(0). Then we have Ha
∞(S∞) ≥ lim supj→∞Ha

∞(Sj ∩ K) for any

compact set K ⊂ B1(0). Give a counterexample showing that this fails if we use instead Ha.

We will apply the previous result with the relatively closed set S := S(T ) ⊂ B1(0), for a

fixed a > ℓ such that Ha(S) > 0, obtaining a good center x ∈ S. Taking a sequence rj → 0

such that

lim
j→∞

Ha
∞(S ∩Brj (x))

raj
≥ 2−a,

the rescaled currents Tj := (δx,rj )∗T have singular set Sj := δx,rj (S(T )) ∩B1(0) in the unit

ball. Since

Ha
∞(Sj ∩ B̄1/2(0)) =

Ha
∞(S ∩ B̄rj/2(x))

raj
≥ 4−a,

the singular set of the blow-up T∞ = limj→∞ Tj (in Rn, along a subsequence), which is

locally the Hausdorff limit S∞ = limj→∞ Sj as seen before, has Ha
∞(S∞ ∩B1(0)) ≥ 4−a. In

particular, we have Ha(S∞ ∩B1(0)) > 0 and thus S(T∞) ∩B1(0) = S∞ ∩B1(0) has still

Hausdorff dimension > ℓ.

Proof of Proposition 3.40. Given η ∈ (0, 2−a) and δ > 0, consider the set S′ ⊆ S of all

points x ∈ S such that

Ha
∞(S ∩ B̄r(x)) < η · ωar

a for all 0 < r ≤ δ.

It suffices to show that Ha(S′) = 0; from the definition of Hausdorff measure, it is easy to

see that this is equivalent to Ha
δ (S

′) = 0 (this equivalence holds for any set S′). To show

that Ha
δ (S

′) = 0, we can assume that S = S′ (up to replacing S with S′).

Since S ⊆ B1(0), we can cover S with finitely many sets of diameter ≤ δ; in particular, we

have Ha
δ (S) < ∞. Given any ε > 0, we can then find a finite or countable cover S ⊆

⋃
j Ej

with sets of diameter rj := diam(Ej) ≤ δ and

Ha
δ (S) ≤

∑
j

ωa
diam(Ej)

a

2a
< Ha

δ (S) + ε.

Without loss of generality, each Ej intersects S at a point xj .

Since xj ∈ S = S′, we have Ha
∞(Ej) ≤ Ha

∞(B̄rj (xj)) < η · ωar
a
j . In particular, for each j

we can find another cover Ej ⊆
⋃

mEj,m such that∑
m

ωa
diam(Ej,m)a

2a
< η · ωar

a
j .
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Up to intersecting each Ej,m with Ej , we can also assume that diam(Ej,m) ≤ diam(Ej) ≤ δ.

Thus, taking the cover E ⊆
⋃

j,mEj,m, we obtain

Ha
δ (S) ≤

∑
j,m

ωa
diam(Ej,m)a

2a
≤

∑
j

η · ωar
a
j = 2aη

∑
j

ωa
diam(Ej)

a

2a
< 2aη(Ha

δ (S) + ε).

Since 2aη < 1 and ε > 0 was arbitrary, we arrive at Ha
δ (S) = 0, as we wanted. □

We are now ready to prove Theorem 3.39.

Proof of Theorem 3.39. Since S(T ) has Hausdorff dimension > ℓ, we can fix a > ℓ such

that Ha(S(T )) > 0. As discussed before, we can then find x0 ∈ B1(0) where a certain

blow-up T0 of T has singular set S(T0) ∩B1(0) of dimension ≥ a > ℓ. Moreover, since T0 is

a blow-up, it is an area-minimizing cone of multiplicity 1 (the varifolds associated to the

rescaled currents converge to the varifold associated to T0, by the convergence of the weight

measures established before, and it follows that (δ0,ρ)∗T0 = T0 also in the sense of currents).

Assume inductively that there exists an area-minimizing cone Tj of multiplicity 1 in Rn,

of the form Tj = JRjK × Cj , with singular set (in B1(0)) of Hausdorff dimension > ℓ, for

some j ∈ {0, . . . , ℓ}. Note that the (n− j− 1)-current Cj is necessarily a cone of multiplicity

1, since this is true for Tj . It is easy to check that Cj must also be area-minimizing. We

claim that an area-minimizing cone Tj+1 exists with the same properties (with j + 1 in

place of j).

Indeed, the singular set of Cj necessarily contains {0}, since otherwise Cj would be smooth

near the origin and thus a plane by conical symmetry, contradicting the assumption S(Tj) ̸= ∅.
Moreover, we must have S(Cj) ⊋ {0}, since otherwise we would have S(Tj) = Rj×{0}, whose
dimension is j ≤ ℓ, a contradiction. We can then blow-up at a point x̂ ∈ S(Tj) = Rj ×S(Cj)

of the form x̂ = (0, yj) ∈ Rj × Rn−j , with yj ̸= 0. We obtain a blow-up of the form

Tj+1 = JRjK × C ′
j , where C ′

j is a blow-up of Cj at yj ̸= 0. As we saw in a previous exercise

(stated for varifolds), C ′
j is translation-invariant along the direction yj . Thus, Tj+1 is also

translation invariant along (0, yj), besides Rj × {0}. The new current is then translation

invariant along a subspace of dimension j+1. We can then write it as Tj+1 = JRj+1K×Cj+1,

up to a rotation. □

While it is hard to classify smooth minimal cones Cm−1 ⊂ Rm \ {0} (in fact, by looking

at the cross-section, these correspond to minimal hypersurfaces in the sphere Sm−1), luckily

we are able to say that area-minimizing ones are flat in dimension m ≤ 7. In fact, stability

of C is enough. Recall that a critical point x for a smooth function E : RN → R is said to

be stable if the Hessian ∇2E(u) is positive semidefinite (a necessary condition for u to be a

local minimum point). In our setting, we say that C is stable if, whenever (Ct)t∈(−ε,ε) is a
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smooth family of perturbations of C (obtained by means of ambient isotopies, given by

flows of vector fields X ∈ C∞
c (Rm \ {0},Rm)), we have

d2

dt2
Hm−1(Ct ∩K)

∣∣∣
t=0

≥ 0,

where K ⊂ Rm \ {0} is any compact set such that Ct \K = C \K for all t.

Theorem 3.42. Assume that the cone C ⊂ Rm \ {0} is a smooth minimal hypersurface

and that C is stable. If m ≤ 7 then C = P \ {0} for some hyperplane P .

The statement applies in particular to area-minimizing cones. It is false when m ≥ 8, as

the example of the Simons cone shows. The proof of this result is quite short and exploits a

certain elliptic PDE satisfied by the squared norm of the second fundamental form, called

the Simons identity. Together with the previous observations, this last ingredient concludes

the proof of the regularity theorem: if we had an area-minimizing current whose singular set

has Hausdorff dimension > n− 8, we would find an area minimizing (m− 1)-dimensional

cone in Rm, with m ≤ n− (n− 8)− 1 = 7, smooth outside of the origin. This is impossible

by the previous theorem.

Useful references:

• Chapters 4, 8 of Simon, Geometric measure theory ;

• for the compactness of integral varifolds: Section 6 of Allard, On the first variation

of a varifold ;

• for the alternative proof and the strong constancy lemma: Allard, An integrality

theorem and a regularity theorem for surfaces whose first variation with respect to

a parametric elliptic integrand is controlled, in the proceedings book Geometric

measure theory and the calculus of variations;

• for Allard’s regularity theorem: De Lellis, An invitation to stationary varifolds;

• for the same in the setting of finite perimeter sets: Chapters 22, 23, 24, 25, 26 of

Maggi, Sets of finite perimeter and geometric variational problems;

• for the regularity of area-minimizing currents in codimension one: Chapter 7 and

Appendices A, B of Simon, Geometric measure theory.
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