
Lecture 4: Allen–Cahn. June 28, 2024
(Geometric Measure Theory)

We can now see the previous tools in action: while they were initially used to produce

minimal submanifolds in an entirely intrinsic manner (the so-called Almgren–Pitts theory),

a more recent approach is to use them in conjunction with the “level set viewpoint” that we

mentioned at the beginning. We now explore this viewpoint, focusing for simplicity on the

case of codimension one (k = n− 1), where we wish to obtain minimal hypersurfaces.

The idea is to view a hypersurface Σn−1 as a level set (such as the zero set) of a map

u : M → R. Since we want Σ to be critical for the area, it is natural to look for a map u

critical for some energy defined on the set of maps.

We will look at the Allen–Cahn energy, which is a model of phase transitions. Namely,

assuming from now on that (Mn, g) is closed, we consider

Eε(u) :=

∫
M

[
ε|du|2 + W (u)

ε

]
,

where W : R → [0,∞) is a double-well potential (i.e., a smooth function whose graph is

“W-shaped”). A standard choice is

W (s) :=
(1− s2)2

4
.

Note that this W vanishes precisely at ±1 and is positive elsewhere; we will always assume

that W has these properties. The typical maps u : M → R that we have in mind have

values in [−1, 1] and M is mostly occupied by two regions A and B with

u ≈ −1 on A, u ≈ 1 on B,

representing the two pure phases of a material. The two regions are separated by an interface

of thickness ≃ ε, where the transition between the two phases happens. Thus, the parameter

ε > 0 is dimensionally a length.

What we expect is that, in the static case of critical maps u, this interface resembles more

and more a hypersurface as ε → 0, and actually a minimal one, of area directly proportional

to Eε(u) in the limit. Thus, the energy Eε should approximate the area functional (for the

purposes of the calculus of variations). This was confirmed by works of De Giorgi, Modica,

Ilmanen, Hutchinson–Tonegawa, and others. The following is the main result of this theory;

with a little abuse of notation, we write (uε) to denote any sequence of maps uεj , associated

to a sequence of parameters εj → 0.
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Theorem 4.1. Given a sequence of maps uε : M → R, each critical for Eε and satisfying

an upper bound of the form

Eε(u) ≤ C

for some uniform C > 0 independent of ε, there exists a stationary integral (n − 1)-

varifold V such that the energy densities converge to cW times the weight |V |, as well as

{uε = 0} → spt(|V |) in the Hausdorff topology, up to subsequences.

Here cW > 0 is a constant depending only on the choice of the double-well potential W

and the energy densities are the measures µε given by

dµε :=
[
ε|du|2 + W (u)

ε

]
d volg,

where volg is the volume measure of the ambient (Mn, g).

From heuristic dimensional analysis, it makes sense that Eε(uε) is an (n− 1)-dimensional

area. The way we normalize each term in the definition of Eε can be seen to be natural

also based on a heuristic computation: as above, the typical competitor u is more or less

constant on two regions A and B, where both du and W (u) are essentially zero; on the

other hand, the interface has volume ≃ ε and here |du| ≃ 1
ε (since u has a spatial room ≃ ε

to transition from −1 to 1), while W (u) ≃ 1, giving

Eε(u) ≃ ε
[
ε · 1

ε2
+

1

ε

]
≃ 1.

Looking at Eε rather than the (n− 1)-dimensional area has two advantages:

• we are replacing the complicated “space of hypersurfaces” with the much simpler

vector space of maps M → R;
• critical points of Eε are C∞-smooth.

The latter holds because, imposing that d
dtEε(u+ tφ)

∣∣∣
t=0

= 0 for any smooth φ : M → R,
we obtain ∫

M

[
2ε⟨du, dφ⟩+ W ′(u)φ

ε

]
= 0,

and thus (integrating by parts)
∫
M [−2ε(∆u)φ+ ε−1W ′(u)φ] = 0; since φ is arbitrary, this

gives the simple elliptic PDE

2ε2∆u = W ′(u), i.e., 2ε2∆u = (u2 − 1)u

for the standard choice of W . This equation is nonlinear, but under reasonable assumptions

(such as u ∈ W 1,2∩L4, a space that we will use later on) an integral version of the maximum

principle immediately gives |u| ≤ 1. Hence, the right-hand side is bounded and by elliptic

bootstrap we easily deduce u ∈ C∞; actually, we have uniform Cℓ bounds for any given ℓ

once we zoom in at scale ε.
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4.1. Solution in dimension one. While we will see how the limit varifold V is constructed,

we will not explain carefully how its integrality is obtained. We just mention that it comes

from a blow-up analysis. Essentially, we expect the interface to resemble an ε-neighborhood

of a hypersurface; on each “line” perpendicular to the hypersurface, we expect u = uε to

resemble several copies of the solution U = Uε : R → R to the equation

2ε2U ′′ = W ′(U), with lim
x→±∞

U(x) = ±1,

which is just an ODE. Multiplying it by U ′, we obtain

ε2[(U ′)2]′ = [W (U)]′.

Taking primitives, we get

ε2(U ′)2 = W (U)

(there is no additive constant since U(x) → ±1 for x → ±∞). This is saying that we have a

perfect equipartition of energy, even in a pointwise sense: the two terms in the definition of

Eε are equal to each other at every point. We can check that U ′ > 0, so that εU ′ =
√

W (U)

and thus

Eε(U) =

∫
R
[ε(U ′)2 + ε−1W (U)] =

∫
R
2
√
W (U)U ′ =

∫ 1

−1
2
√

W (s) ds.

Exercise 4.2. Show that the previous ODE, with boundary conditions limx→±∞ U(x) = ±1,

has a unique solution up to translations in x, and that U ′ > 0 everywhere.

In higher dimension, we expect energy to be “quantized” in multiples of the energy of

this one-dimensional heteroclinic solution. And indeed, the aforementioned constant is

cW =
∫ 1
−1 2

√
W (s) ds.

4.2. Existence of nontrivial critical points. The previous general result is definitely

interesting, but it would be rather disappointing to end up with the trivial limit V = 0.

Since |V | is the limit of the energy densities, in order to obtain a limit V ̸= 0 it suffices to

show the following.

Proposition 4.3. Given a compact Riemannian manifold (Mn, g) without boundary, for

any ε > 0 small enough there exists a critical point uε of Eε such that

0 < c ≤ Eε(uε) ≤ C,

for positive constants 0 < c ≤ C independent of ε.

It can be shown that if M has positive (Ricci) curvature then no stable minimal

hypersurface exists. This suggests to build critical points uε which are unstable instead.
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Example 4.4. In fact, for the round sphere Sn, the construction outlined below will yield

the equator Sn−1 in the limit; this is an unstable critical point of the area since (while

“random” perturbations of it will have larger area) shrinking it towards the north pole or the

south pole makes the area smaller.

A very general idea to produce unstable critical points is to single out a mountain pass

situation: given a Banach space X and a C1 function E : X → R, we assume that there

exists a threshold λ ∈ R and two points a, b ∈ X with

E(a), E(b) < λ.

Moreover, we assume that these two points are separated by a “barrier” (like a chain of

mountains) of height ≥ λ: more precisely, for any continuous path γ : [0, 1] → X with

γ(0) = a and γ(1) = b, we assume that there exists an intermediate time t ∈ (0, 1) such that

E(γ(t)) ≥ λ. Thus each path γ requires a certain “effort,” which we can measure as the

maximum height reached along it, namely

max
t∈[0,1]

E(γ(t)).

We look for an efficient path γ, namely we compute

µ := inf
γ

max
t∈[0,1]

E(γ(t)) ≥ λ,

where γ ranges among all continuous paths from a to b.

Our intuition suggests that, if such cheapest path exists, then the highest point along it is

a saddle-type critical point. While the existence of this cheapest γ is not really guaranteed,

the existence of a critical point at this precise energy level holds in great generality.

Lemma 4.5 (mountain pass lemma). If E : X → R satisfies the Palais–Smale condition

(whenever we have a sequence of points (xj) with E(xj) converging to some finite limit and

∥dE(xj)∥X∗ → 0, there exists a subsequence converging strongly in X), then in the previous

situation µ is the energy of a critical point.

It is not hard to check that Eε satisfies the Palais–Smale condition on the Banach space

X := W 1,2(M) ∩ L4(M) for the standard choice of W (we intersect with L4 because of the

growth at infinity of this double-well potential). It now remains to find such a mountain

pass situation.

The geometric idea, in the limit ε → 0, is to perform a sweepout of the manifold M .

Roughly speaking, this means that we foliate it with (possibly singular) hypersurfaces Σt,

parametrized for instance by the interval [0, 1], in such a way that Σt is a single point for t = 0
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and t = 1. Thus, the area of Σt at the beginning and at the end is zero, while we expect to

have an intermediate time such that Σt has substantially large area. For instance, a sweepout

of the sphere is given by foliating it with parallels, taking Σt := {x ∈ Sn : xn+1 = 2t− 1}.
Clearly, even taking Σ0 and Σ1 to be different points, there exist sweepouts such that

the area of Σt is very small for all times (for instance, Σt could be a single point, varying

along a curve). To avoid this situation, we look for a topological condition on the sweepout,

guaranteeing that it really wraps around M . In codimension one, there is a simple way out:

we require that the region enclosed by Σt increases from ∅ to the whole M .

This is even easier to make rigorous at the ε level, where we have maps u : M → R: we
simply look at continuous paths (u(t))t∈[0,1] ⊂ X such that

u(0) ≡ 1, u(1) ≡ −1.

Morally, the region {u(t) < 0} enclosed by the level set {u(t) = 0} is empty at time t = 0

and is the full ambient M at time t = 1; we expect to see an intermediate time where the

two phases 1 and −1 coexist and the interface between them is large.

Proof of Proposition 4.3. To obtain an upper bound, we take a Morse function f : M → R,
rescaled to take values in [14 ,

3
4 ]. Moreover, we consider any smooth function χ : R → R with

χ(s) = −1 for s ≤ −1 and χ(s) = 1 for s ≥ 1, and we let

χ(t)
ε (s) := χ

(s− t

ε

)
.

In other words, χ
(t)
ε transitions from −1 to 1 on the interval [t− ε, t+ ε]. We then take

u(t)ε := χ(t)
ε ◦ f, for t ∈ [0, 1].

It is not hard to see that this is a continuous path in X with the desired endpoints and that

max
t∈[0,1]

Eε(u
(t)
ε ) ≤ C

for a constant C depending only on (Mn, g) (and f), for ε > 0 small enough.

To obtain a lower bound of the form

max
t∈[0,1]

Eε(u
(t)) ≥ c > 0

for any continuous path (u(t)) with u(0) ≡ 1 and u(1) ≡ −1, we observe that

Eε(u) ≥
∫
M

2
√

W (u)|du| =
∫
M

|d(F (u))|

by Cauchy–Schwarz, where F is the primitive of 2
√
W satisfying F (0) = 0. Moreover,∫

M
F (u(0)) = Hn(M) · F (1) > 0,

∫
M

F (u(1)) = Hn(M) · F (−1) < 0.
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By continuity, there exists an intermediate time t ∈ (0, 1) such that∫
M

F (u(t)) = 0.

Thus, at this specific t, Poincaré’s inequality gives

Eε(u
(t)) ≥

∫
M

|d(F (u(t)))| ≥ c′
∫
M

|F (u(t))|,

where c′ > 0 is a constant depending only on (Mn, g). Finally, since we can assume without

loss of generality that Eε(u
(t)) ≤ 1 (as otherwise the desired lower bound is obvious), we

have
∫
M W (u(t)) ≤ ε. This immediately gives that W (u(t)) ≤ 2ε

Hn(M) on at least half of

M (in measure), giving |u(t)| ≥ 1− δε here (with an error δε → 0 as ε → 0). This gives a

uniform lower bound on
∫
M |F (u(t))|, and hence on Eε(u

(t)), as we wanted.

Finally, the mountain pass lemma (applied with λ := c) gives us a critical point uε ∈ X

with energy Eε(uε) ∈ [c, C]. □

4.3. Stress-energy tensor and the limit varifold. For each ε > 0 sufficiently small, we

now have a critical point uε : M → R for Eε, with uniform bounds c ≤ Eε(uε) ≤ C.

In order to extract a limiting (possibly singular) minimal hypersurface without “mass

cancellation,” we associate to each critical point uε a sort of diffuse varifold Vε, with the

goal of taking the limit of Vε along a subsequence.

To motivate what follows, we observe that a k-varifold V in Rn whose disintegration is a

Dirac mass δPx centered at a k-plane Px, at a.e. point x ∈ Rn (i.e., giving importance to just

one plane for a.e. x), can be seen as a Radon measure with values into the set of matrices

An
k := {S ∈ Rn×n symmetric s.t. S2 = S, trS = k}.

Indeed, each symmetric matrix in this set gives the orthogonal projection onto a k-plane,

and this gives a bijective correspondence between this set and the set of k-planes Grnk . In

other words, we identify the varifold V (with disintegration dV (x, ·) = d|V |(x)⊗ δPx(·))
with the matrix-valued measure πPx d|V |(x).

Note that, under this identification, the weight of the varifold is uniquely determined by

V : it is just tr(V )
k . Rectifiable varifolds are examples of such “univalued” varifolds.

Exercise 4.6. For a general varifold V on Rn, check that stationarity is equivalent to∫
Rn×An

k

⟨πP ,∇X⟩ dV (x, P ) = 0
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for every vector field X ∈ C1
c , where we use the usual Hilbert–Schmidt scalar product

between matrices. For “univalued” k-varifolds V , show that V is stationary if and only if

div V = 0

in the distributional sense, where we view V as a matrix-valued measure as above and we

take the divergence of each row.

Remark 4.7. The same holds on a Riemannian manifold, using a measure with values into

symmetric endomorphisms S : TxM → TxM (at each point x ∈ M) such that S2 = S and

trS = k.

We have such a matrix-valued measure for each ε > 0: it is Tε d volg, with the so-called

stress-energy tensor

Tε := eεI − 2εduε ⊗ duε,

where eε := ε|duε|2 + W (uε)
ε . It has zero divergence: exactly as stationarity of varifolds, this

is seen by taking a smooth vector field X and by exploiting criticality of uε with respect to

variations of the form

t 7→ uε ◦ ΦX
t ,

called inner variations, where ΦX
t is the flow of X (essentially, this moves the “interface” to

its image under ΦX
−t, since this is what happens to each level set).

Exercise 4.8. Prove that div Tε = 0.

While Tε is certainly symmetric, it is not even clear if it is positive semidefinite. We thus

need to enlarge the previous set of matrices. We introduce the convex set

Ãn
k := {S ∈ Rn×n symmetric s.t. − nI ≤ S ≤ I, trS ≥ k}.

Given a positive Radon measure µ, a generalized k-dimensional varifold with weight µ is a

matrix-valued measure of the form

dV = Sx dµ(x), with Sx ∈ Ãn
k .

Note that the weight must be specified, since it is no longer uniquely determined by V .

Remark 4.9. This is the “univalued” version of a more general notion, according to which a

generalized varifold is a Radon measure on the bundle Rn× Ãn
k (and similarly on manifolds).

However, we stick to this special univalued case, since the next rectifiability criterion

would anyway require to replace such a varifold with its “collapsed” version (where, in the

disintegration, we replace the probability measure above each point x with its center of mass,
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thus collapsing it to a single “generalized” plane, an element of Ãn
k). Note that stationarity

in the sense that
∫
Rn×Ãn

k
⟨S,∇X⟩ dV (x, S) is equivalent to div V ′ = 0 for the “collapsed”

varifold V ′; in other words, stationarity sees only the center of mass of the disintegration.

In this setting, we have the following important result by Ambrosio–Soner.

Theorem 4.10 (Ambrosio–Soner rectifiability theorem). Given a generalized k-

dimensional varifold V with weight µ, assume that it is stationary (i.e., div V = 0) or has

locally bounded first variation (i.e., div V is itself a Radon measure) and that Θ∗
k(µ, x) > 0

for µ-a.e. x. Then V is (the matrix-valued measure given by) a rectifiable varifold. In

particular, µ is k-rectifiable and, writing dV = Sx dµ, the matrix Sx is the orthogonal

projection onto the tangent plane to µ at x, for µ-a.e. x.

We skip the proof, which involves checking that Sx ∈ An
k a.e. and then relies on Allard’s

rectifiability theorem.

Remark 4.11. Conversely, Allard’s rectifiability theorem follows from this result: given a

varifold V , with disintegration dV (x, P ) = d|V |(x)⊗ αx(P ), we consider the “collapsed”

varifold V ′ as in the previous remark, obtained by taking the center of mass Sx :=∫
Gn

k
πP dαx(P ) at each point. Note that Sx ∈ Ãn

k since πP ∈ An
k ⊆ Ãn

k and Ãn
k is convex,

and hence V ′, given by dV ′(x) = Sx d|V |(x), is a generalized varifold. Since V is stationary

or has locally bounded first variation, the same holds for V ′. Hence, by the Ambrosio–Soner

criterion, |V | is k-rectifiable and Sx ∈ An
k for |V |-a.e. x. This implies that αx was in fact a

Dirac mass, since otherwise it is easy to check that its center of mass Sx would have kernel

of dimension < n− k. This proves that αx = πTx|V |, so that V is a rectifiable varifold.

These results and observations also hold on a manifold (Mn, g). In our setting, we define

Vε as follows: the weight is the energy density, i.e.,

dµε := eε d volg,

while dVε := Tε d volg is our generalized varifold. Thus, we have dVε = Sε dµε with

Sε := I − 2εduε ⊗ duε
eε

.

Remark 4.12. The fact that Sε ∈ Ãn
k , and in particular the lower bound on its trace, requires

the fundamental inequality proved at the end of these notes. Strictly speaking, for general

metrics g this lower bound holds only at the limit ε → 0 (since Modica’s inequality contains

an error term if we do not assume Ric ≥ 0), and thus we do have a generalized varifold only

in the limit.
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Since Vε is just a measure taking values in a closed convex set, we can extract a limit

generalized varifold V0 along a suitable subsequence εj → 0. The weight µ0 of V0 is taken

to be the limit of the weights µε. In particular, µ0 is not trivial. We want to apply this

rectifiability criterion to conclude that V0 is a rectifiable varifold. In fact, the ultimate result

that one can prove is the following.

Theorem 4.13 (Hutchinson–Tonegawa structure theorem). Given a sequence of

critical points uεj of Eεj , with εj → 0 and

sup
j

Eεj (uj) < ∞,

the limit generalized varifold V0 built as above (along a subsequence) is cW times an integral

stationary varifold. Moreover, spt |V0| is the limit of the level sets u−1
εj (λ) for any fixed

λ ∈ (−1, 1) (along the same subsequence).

Remark 4.14. We could have also taken a limit in the sense of currents. The 1-form

2
√

W (uε) duε is closed, and hence (if M is oriented) we can associate to it an (n−1)-current

Γε with no boundary, given by

⟨Γε, ω⟩ :=
∫
M

2
√
W (uε) duε ∧ ω.

It has mass M(Γε) ≤ Eε(uε) by Cauchy–Schwarz (with equality in dimension one; it can be

shown that this is asymptotically an equality also when n > 1). Hence, we can extract a

limit normal current Γ0. Since its weight |Γ0| ≤ µ0 and, as we will show, µ0 is rectifiable,

also Γ0 is rectifiable. Actually, it can be shown to have density cW a.e. (these facts can

be established in a quicker way using BV functions and showing that Γ0
cW

bounds a finite

perimeter set). The drawback is that we could have Γ0 = 0 a priori, due to some cancellation.

However, these currents can be used to show the so-called Γ-convergence of Eε to the

(n− 1)-dimensional area.

4.4. Monotonicity and consequences. In order to apply the previous rectifiability

criterion to the limiting generalized varifold V0, we need to check that µ0 has positive

(upper) density at µ0-a.e. point. The next result essentially says that if the energy on a ball

Br(p) is much smaller than rn−1 (which lower bounds the area of a minimal hypersurface

Σ ∋ p in the same ball, by the monotonicity formula for minimal submanifolds), then no

interface is forming near p. We write u = uε for simplicity.

Proposition 4.15 (clearing-out). Given η > 0, there exists a constant δ > 0, depending

only on η, W , and (Mn, g), such that if Eε(u,Br(p)) ≤ δrn−1 and ε ≤ r/2 ≤ δ then

|u| ∈ (1− η, 1 + η) on Br/2(p).
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In particular, assuming that W ′′(±1) > 0, on the smaller ball Br/2(p) we compute that

∆(W (u)) = W ′′(u)|∇u|2 + W ′(u)2

2ε2
≥ W ′(u)2

2ε2
≥ c

ε2
W (u)

for some constant c > 0, since |W ′(u)| ≃ |u− (±1)| ≃
√

W (u) for u ≈ ±1. In the sequel,

we assume that (Mn, g) is locally Euclidean for simplicity, just to avoid dealing with error

terms. Calling f(σ) the spherical average of W (u) on the sphere ∂Bσ(p), we get

f ′(σ) =
1

Hn−1(∂Bσ(p))

∫
∂Bσ(p)

∂ν(W (u))

=
1

Hn−1(∂Bσ(p))

∫
Bσ(p)

∆(W (u))

≥ c

ε2σn−1

∫
Bσ(p)

W (u)

by the divergence theorem (for a different c > 0), for all σ < r
2 .

By the mean value theorem, since∫ r/2

r/4
ρn−1f(ρ) dρ ≤ C

∫ r/2

0

∫
∂Bσ(p)

W (u) dσ ≤ C

∫
Br/2(p)

W (u) ≤ CεEε(u,Br/2(p)),

we can find an intermediate radius ρ ∈ ( r4 ,
r
2) such that

f(ρ) ≤ 4nCε

rn
Eε(u,Br/2(p)).

Since
∫ ρ
r/8 f

′(σ) dσ ≤ f(ρ) and ρ− r
4 ≥ r

8 , we can find another radius σ ∈ ( r8 , σ) such that

f ′(σ) ≤ 8

r
f(ρ) ≤ Cε

rn+1
Eε(u,Br/2(p)),

for a different C > 0. Thanks to the previous bound, we arrive at

c

ε2σn−1

∫
Bσ(p)

W (u) ≤ Cε

rn+1
Eε(u,Br/2(p)).

Since σ is comparable with r, this gives∫
Br/8(p)

W (u) ≤
∫
Bσ(p)

W (u) ≤ Cε3

r2
Eε(u,Br(p)).

As a consequence, we arrive at the following result.

Theorem 4.16 (rectifiability of the limit varifold). We have Θn−1(µ0, p) > 0 at

all points p ∈ spt(µ0). In particular, the previous rectifiability criterion applies: µ0 is an

(n− 1)-rectifiable measure.

We write Θn−1(µ0, p) since the density exists at every p, as a consequence of a monotonicity

formula proved later on.
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Proof. We assume for simplicity that the ambient (Mn, g) is flat. In fact, the proof will show

that Θn−1(µ0, p) ≥ c for some threshold c > 0 independent of p ∈ spt(µ0). Assume that

Θn−1(µ0, p) is very small. Then there exists a (small) radius r > 0 such that µ0(B̄r(p)) is much

smaller than rn−1, implying that the same eventually holds for µε(Br(p)) = Eε(uε, Br(p)),

for ε along our subsequence.

Writing u = uε, we can then apply clearing-out, and thus the integral bound on W (u)

that we deduced from it, as well as Modica’s inequality ε|du|2 ≤ W (u)
ε from the next section,

to conclude that

Eε(u,Br/8(p)) ≤
∫
Br/8(p)

2W (u)

ε
≤ Cε2

r2
Eε(u,Br(p)).

Since r > 0 is fixed and lim supε→0Eε(u,Br(p)) ≤ µ0(B̄r(p)) is finite, the right-hand side

converges to zero. Hence,

µ0(Br/8(p)) ≤ lim inf
ε→0

Eε(u,Br/8(p)) = 0.

This shows that µ0(Br/8(p)) = 0, contradicting the assumption that p ∈ spt(µ0). □

The previous clearing-out result is in turn a simple consequence of a monotonicity formula,

which mimics the one for minimal hypersurfaces (recall that the energy density is expected

to concentrate along a minimal hypersurface).

Proposition 4.17 (monotonicity formula). If (Mn, g) is flat (i.e., locally Euclidean),

then

r 7→ Eε(u,Br(p))

rn−1

is increasing for any given center p ∈ M , as r varies in the interval (0, inj(M)). For general

closed Riemannian manifolds, the slightly perturbed function eCr Eε(u,Br(p))
rn−1 is increasing for

ε, r small enough (where C depends only on (Mn, g)).

Remark 4.18. Since eCr → 1 as r → 0, the perturbing factor eCr usually does not affect the

arguments exploiting the monotonicity formula.

Proof of Proposition 4.15 assuming Proposition 4.17. We sketch a proof in the flat case,

for simplicity. Since Eε(u,Br(p)) ≤ δrn−1 and ε ≤ r/2, by monotonicity we know that

Eε(u,Bε(p)) ≤ δεn−1.

As computed in the next section, we have |u| < 1 and, as a consequence, ∆|du|2 ≥
−Cε−2|du|2. Using standard techniques such as Moser iteration, it is not hard to conclude

that we have a pointwise bound of the form

|du|2 ≤ Cε−2
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on a smaller ball Bcr(p) (this is best seen by rescaling Bε(p) to the unit ball, so that

after rescaling we have a function ũ with the energy bound
∫
B1

|dũ|2 ≤ δ ≤ 1 and

∆|dũ|2 ≥ −C|dũ|2).
In particular, since W is Lipschitz on [−1, 1], we also have |d(W (u))| ≤ Cε−1. Now if

|u| ̸∈ (1 − η, 1 + η) at p, so that here W (u) ≥ η̃ for some fixed η̃ > 0, by this Lipschitz

bound we would have W (u) ≥ η̃
2 on a smaller ball Bcη̃ε(p), for a different c > 0. But then

Eε(u,Bε(p)) ≥
∫
Bcη̃ε(p)

W (u)

ε
≥ η̃

2ε
Hn(Bcη̃ε(p)) =

η̃ · ωn(cη̃)
n

2
εn−1.

This contradicts the fact that Eε(u,Bε(p)) ≤ δεn−1 once we choose δ small enough. We

proved the claim at the center p, but it is easy to see that a bound Eε(u,Bε(q)) ≤ 2n−1δεn−1

also holds for nearby center points q ∈ Br/2(p), so that the conclusion also holds at these

points. □

Recalling how we obtained the monotonicity formula for stationary varifolds, we can

try to get it in the present setting by exploiting our generalized varifold Vε. Assuming for

simplicity that (Mn, g) is flat, mimicking the computation used for stationary varifolds we

get the following:∫
Br(p)

(neε − 2ε|du|2) = r

∫
∂Br(p)

(eε − 2ε|∂νu|2) ≤ r

∫
∂Br(p)

eε.

Exercise 4.19. Show the previous formula.

This formula immediately implies the fact that Eε(u,Br(p))
rn−2 is increasing, since neε −

2ε|du|2 ≥ (n− 2)eε and thus the formula implies that

(n− 2)

∫
Br(p)

eε ≤ r

∫
∂Br(p)

eε,

which rearranges to

d

dr

∫
Br(p)

eε

rn−2
≥ 0.

However, this is not enough for us. This unnatural power in the denominator comes from

the Dirichlet term |du|2 in the energy.

Remark 4.20. In fact, in other variational settings such as the study of harmonic maps

between manifolds, where the energy contains just this term, this becomes the natural

power: for instance, x 7→ x
|x| is a harmonic map from R3 to S2 and its Dirichlet energy on

Br(0) is a multiple of r = rn−2.
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However, quite miraculously, in our setting we are able to show that there is a tradeoff

between the two terms appearing in the energy Eε: in the next section we will prove the

bound

ε|du|2 ≤ W (u)

ε
,

due to Modica. This bound allows to improve the exponent n− 2 to the expected one n− 1.

Exercise 4.21. Show that this bound implies Proposition 4.17 in the flat case.

The previous results imply that the limit generalized varifold V0 satisfies the density

assumption Θn−1(µ0, ·) > 0 on spt(µ0) in the statement of the Ambrosio–Soner rectifiability

criterion. Moreover, it is stationary since it is a limit of stationary generalized varifolds.

Hence, we conclude that it is a genuine rectifiable varifold.

Remark 4.22. To conclude the discussion, let us hint at how to obtain integrality of V0 (up

to a multiplicative constant cW > 0). Since it is rectifiable, at a.e. point x its blow-up is an

(n− 1)-plane P with constant multiplicity θ. In order to show that θ ∈ cW · N, by rescaling

each uε (thus slightly changing the parameter ε in the PDE) and performing a diagonal

argument, we can assume that this plane with multiplicity θ is the limit varifold. Since θ is

constant, the multiplicity formula for Eε is almost saturated if we center it at any point

x ∈ P . Since in its derivation we threw away the positive term 2ε|∂νuε|2 on spherical shells,

it is easy to conclude that ε|∂vuε|2 → 0 in L1
loc for any direction v ∈ P . Essentially, this

says that uε is “almost one-dimensional,” since its partial derivatives along P are “small.”

We then look at generic lines ℓ perpendicular to P and, on each line ℓ, we check that uε

resembles several copies of the standard heteroclinic solution (scaled by ε), separated by

long intervals where |uε| ≈ 1, where no energy concentrates. Thus, the energy along each

line ℓ is close to an integer multiple of cW . The fact that this multiple is roughly the same

as ℓ varies relies on Allard’s strong constancy lemma mentioned in the previous lecture.

4.5. Two proofs of Modica’s bound. We will now show two possible ways of proving

the fundamental inequality

ε|du|2 ≤ W (u)

ε
,

assuming that Ric ≥ 0, i.e., (Mn, g) has nonnegative Ricci curvature (in general, with some

additional work, one can obtain a slightly weaker bound of the form ε|du|2 ≤ W (u)
ε + C,

with C independent of ε ∈ (0, 1); this is enough to obtain an almost-monotonicity and carry

out the preceding analysis, again with little extra work).
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First proof. We start with Modica’s original argument, assuming actually Ric > 0. Let

ξ := ε|du|2 − W (u)

ε
,

the so-called discrepancy, and assume by contradiction that it attains a positive maximum

at a point p ∈ M .

In the Euclidean space we would have ∆|du|2 = 2⟨d∆u, du⟩+ 2|Hessu|2 for any smooth

function u. On a Riemannian manifold, there is a correcting term involving the Ricci

curvature: specifically, Bochner’s formula tells us that

∆|du|2 = 2⟨d∆u, du⟩+ 2|Hessu|2 + 2Ric(∇u,∇u).

In our setting, since 2∆u = ε−2W ′(u), we obtain

∆|du|2 = W ′′(u)

ε2
|∇u|2 + 2|Hessu|2 + 2Ric(∇u,∇u).

As for W (u), we have

∆W (u) = div(W ′(u)∇u) = W ′′(u)|∇u|2 +W ′(u)∆u = W ′′(u)|∇u|2 + W ′(u)2

2ε2
.

Hence, when we compute ∆ξ, the terms involving W ′′(u) cancel, giving

∆ξ = 2ε|Hessu|2 + 2εRic(∇u,∇u)− W ′(u)2

2ε3
.

Since p is a maximum point for ξ, we must have ∆ξ(p) ≤ 0. Also, since we are assuming

that ξ(p) > 0, we have ε|∇u|2(p) = ε|du|2(p) > W (u)
ε (p) ≥ 0, and hence ∇u(p) ̸= 0, so that

Ric(∇u,∇u) > 0 at p. Thus, we arrive at

0 > 2ε|Hessu|2 − W ′(u)2

2ε3
at p,

or equivalently

|W ′(u)| > 2ε2|Hessu| at p.

Moreover, since p is a maximum point for ξ, we also have dξ(p) = 0. We compute that this

is the same as

2εHessu[∇u, ·] = W ′(u)

ε
du at p.

Taking absolute values, we obtain

|W ′(u)||∇u| = 2ε2|Hessu[∇u, ·]| ≤ 2ε2|Hessu||∇u| at p.

Canceling |∇u|(p) > 0, we arrive at the opposite inequality |W ′(u)| ≤ 2ε2|Hessu|, a
contradiction. □
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We now present an alternative proof, which works assuming that
√
W is a smooth,

strictly concave function on (−1, 1) (in the sense that the second derivative of
√
W is

negative). Note that this holds for the standard choice W (s) := (1−s2)2

4 . This proof has the

minor advantage of working immediately also in the case Ric ≥ 0 and, most importantly,

it avoids exploiting the first order optimality at a maximum point of the discrepancy,

making it conceptually simpler. This is the route followed to achieve an analogous bound in

codimension two, involving critical points of the abelian Yang–Mills–Higgs energy (in the

work by Pigati–Stern).

Exercise 4.23. Check that this assumption is equivalent to W ′′ < (W ′)2

2W on (−1, 1).

We also assume that W ′(s) > 0 for s > 1 and W ′(s) < 0 for s < −1, which guarantees

that a solution u satisfies |u| ≤ 1 at each point (indeed, at the maximum point p for u we

have 0 ≥ 2ε2∆u = W ′(u), which is a contradiction if u(p) > 1; a similar argument shows

that u ≥ −1). Actually, the maximum principle implies that |u| < 1 for a nonconstant

solution: indeed, the function v := 1− u satisfies

∆v = −W ′(u)

2ε2
= cv,

where c := h(u) and h(s) is a smooth function extending − W ′(s)
2ε2(1−s)

(note that W ′(1) = 0).

Since v ≥ 0, by the maximum principle we have either v > 0 (everywhere) or v ≡ 0 (the

same proof shows that, in general, two solutions u ≤ ũ to a second-order nonlinear elliptic

PDE of the form ∆u = f(u) cannot touch, unless they coincide; in this case we are taking

ũ := 1). This shows that u < 1 and similarly we can check that u > −1.

Second proof. This time we look at the modified discrepancy

ξ :=
√
ε|du| −

√
W (u)√
ε

.

Again, the goal is to show that ξ ≤ 0, so we assume by contradiction that ξ(p) > 0 at a

maximum point p. Using Bochner’s formula and Cauchy–Schwarz, it is easy to check that

∆|du| ≥
〈
d∆u,

du

|du|

〉
=

W ′′(u)

2ε2
|du|

on the region {|du| > 0} (in particular at p), assuming Ric ≥ 0. Moreover, for
√
W (u) we

compute

∆
√
W (u) = div

( W ′

2
√
W

∇u
)
=

( W ′′

2
√
W

− (W ′)2

4
√
W 3

)
|∇u|2 + (W ′)2

4ε2
√
W

,

writing W in place of W (u) for simplicity (and similarly for W ′,W ′′).
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We thus obtain

√
ε∆ξ ≥ W ′′

2ε
|du| − (W ′)2

4ε2
√
W

−
( W ′′

2
√
W

− (W ′)2

4
√
W 3

)
|∇u|2

=
(W ′)2

4
√
W 3

(
|∇u|2 − W

ε2

)
− W ′′

2
√
W

|∇u|
(
|∇u| −

√
W

ε

)
.

If the two expressions between parentheses were the same multiple of ξ, we would immediately

obtain an inequality of the form ∆ξ ≥ cξ, with c > (thanks to the assumption that
√
W is

concave), concluding the proof. However, they are slightly different: the first one is in fact a

multiple of the first definition of discrepancy given above.

We thus proceed in a slightly more careful way, working at the point p from now on.

Since |∇u| −
√
W
ε > 0 and W ′′ < (W ′)2

2W , we have

√
ε∆ξ >

(W ′)2

4
√
W 3

(
|∇u|2 − W

ε2

)
− (W ′)2

4
√
W 3

|∇u|
(
|∇u| −

√
W

ε

)
at p. Now two terms cancel, leaving us with

√
ε∆ξ >

(W ′)2

4
√
W 3

·
√
W

ε

(
|∇u| −

√
W

ε

)
≥ 0.

This is again a contradiction, since ∆ξ(p) ≤ 0. □

Useful references:

• for the mountain pass lemma: Section 8.1 of Ambrosetti–Malchiodi, Nonlinear

analysis and semilinear elliptic problems (where the statement is a special case of

the one given in these notes, but the same proof works);

• for the structure theorem on the limit varifold: Hutchinson–Tonegawa, Convergence

of phase interfaces in the van der Waals–Cahn–Hilliard theory ;

• for its geometric application to construct minimal hypersurfaces in a closed ambient:

Guaraco, Min-max for phase transitions and the existence of embedded minimal

hypersurfaces;

• for the Ambrosio–Soner rectifiability result: Section 3 of Ambrosio–Soner, A measure

theoretic approach to higher codimension mean curvature flow (the definition of the

set Ãn
k of “generalized planes” is slightly different from the one given here, but the

same proof works);

• for analogous results in codimension two: Pigati–Stern, Minimal submanifolds from

the abelian Higgs model.
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