Primer on Entropic Optimal Transport

Marcel Nutz Columbia University

June 2025

Outline

- Entropic Optimal Transport
- Relative Entropy (KL Divergence)
- Minimizing Relative Entropy
- 4 Schrödinger Bridges
- 5 EOT Potentials and Dual Problem
- 6 Convergence of EOT to OT

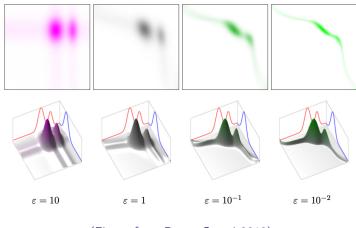
Entropic Optimal Transport

- Regularization parameter $\varepsilon > 0$
- Entropic optimal transport (EOT) problem:

$$\mathsf{EOT}_arepsilon := \inf_{\pi \in \mathsf{\Pi}(\mu,
u)} \int_{\mathsf{X} \times \mathsf{Y}} c \ d\pi + \varepsilon \mathsf{H}(\pi | \mu \otimes
u)$$

- $H(\cdot|\mu\otimes\nu)$ is relative entropy (Kullback–Leibler divergence) wrt. $\mu\otimes\nu$
- Unique minimizer π_{ε} , and $\pi_{\varepsilon} \sim \mu \otimes \nu$
- EOT is tradeoff between transport cost and entropy
- ullet "Interpolates" between optimal transport and $\mu \otimes
 u$

Entropic Regularization



(Figure from Peyré-Cuturi 2019)

Properties of EOT

- Generally an easier problem than OT
- ullet We'll assume throughout that $c\in L^1(\mu\otimes
 u)$ and bounded from below
- \bullet And that is enough for existence and uniqueness of optimal coupling π_ε
- Computation through Sinkhorn's algorithm (IPFP)
- Solve EOT $_{\varepsilon}$ for small ε to approximate OT
- EOT has many desirable properties related to smoothness

Outline

- Entropic Optimal Transport
- 2 Relative Entropy (KL Divergence)
- Minimizing Relative Entropy
- 4 Schrödinger Bridges
- 5 EOT Potentials and Dual Problem
- 6 Convergence of EOT to OT

Definition of Relative Entropy (KL Divergence)

Let (Ω, \mathcal{F}) be a measurable space

Definition

Given $Q, R \in \mathcal{P}(\Omega)$, the *relative entropy* (Kullback–Leibler divergence) is defined as

$$H(Q|R) = egin{cases} E^Q \left[\log rac{dQ}{dR}
ight], & Q \ll R, \ \infty, & ext{otherwise.} \end{cases}$$

- Or: $H(Q|R) = E^R \left[h\left(\frac{dQ}{dR}\right) \right]$ for $h(z) = z \log z$
- $h(z) = z \log z$ is strictly convex on $(0, \infty)$
- From Jensen's inequality:

$$Q \mapsto H(Q|R)$$
 is convex and nonnegative

- Strictly convex where finite
- H(Q|R) = 0 if and only if Q = R

Pinsker's Inequality with Total Variation Distance

Let $P, Q \in \mathcal{P}(\Omega)$ and $R \gg P, Q$. Define

$$||P - Q||_{TV} := \int \left| \frac{dP}{dR} - \frac{dQ}{dR} \right| dR$$

Alternative definitions:

$$||P - Q||_{TV} = \sup_{|\phi| \le 1} \int \phi \, d(P - Q) = 2 \sup_{A \subset \Omega} |P(A) - Q(A)|$$

Lemma (Pinsker's Inequality)

For
$$Q, R \in \mathcal{P}(\Omega)$$
,

$$||Q - R||_{TV} \le \sqrt{2H(Q|R)}$$

Donsker-Varadhan Variational Formula

Lemma (Donsker-Varadhan)

$$H(Q|R) = \sup_{\phi \ bounded, \ measurable} \left(E^Q[\phi] - \log E^R[e^{\phi}]\right)$$

Or:

$$H(Q|R) = \sup_{\phi: E^R[e^{\phi}] < \infty} \left(E^Q[\phi] - \log E^R[e^{\phi}] \right)$$

If Ω Polish:

$$H(Q|R) = \sup_{\phi \ bounded, \ continuous} \left(E^Q[\phi] - \log E^R[e^{\phi}]\right)$$

Implies:

• $(Q, R) \mapsto H(Q|R)$ is jointly convex and lower semicontinuous (in TV, and also weakly in the Polish setting)

Additivity w.r.t. Conditioning

Suppose both Q and R are written as disintegrations w.r.t. a marginal:

$$Q = Q_0(dx) \otimes Q^{\times}(dy), \quad R = R_0(dx) \otimes R^{\times}(dy)$$

If $Q \ll R$, then

$$\frac{dQ}{dR}(x,y) = \frac{dQ_0}{dR_0}(x)\frac{dQ^x}{dR^x}(y)$$

and hence

$$H(Q|R) = \int \log\left(\frac{dQ}{dR}\right) dQ$$

$$= \int \left[\log\left(\frac{dQ_0}{dR_0}\right) + \log\left(\frac{dQ^x}{dR^x}\right)\right] Q^x(dy)Q_0(dx)$$

$$= H(Q_0|R_0) + \int H(Q^x|R^x) Q_0(dx)$$

Data Processing Inequality

Lemma (Data Processing Inequality)

Let $Q, R \in \mathcal{P}(\Omega)$ and let $T : \Omega \to \Omega'$ be measurable.

Then the pushforwards $T_\# Q, T_\# R \in \mathcal{P}(\Omega')$ satisfy

$$H(T_\#Q|T_\#R)\leq H(Q|R).$$

More generally, map T can be replaced by a stochastic kernel.

Interpretation: Transformations cannot increase relative entropy

Example: T = Projection to a marginal (cf. preceding slide)

Outline

- Entropic Optimal Transport
- 2 Relative Entropy (KL Divergence)
- Minimizing Relative Entropy
- 4 Schrödinger Bridges
- 5 EOT Potentials and Dual Problem
- 6 Convergence of EOT to OT

Existence and Uniqueness of Entropic "Projection"

Theorem

Let $\emptyset \neq \mathcal{Q} \subseteq \mathcal{P}(\Omega)$ be convex and closed w.r.t. TV, and

$$\mathcal{Q}_{fin}:=\{\textit{Q}\in\mathcal{Q}:\,\textit{H}(\textit{Q}|\textit{R})<\infty\}\neq\emptyset.$$

(a) There exists a unique $Q_* \in \mathcal{Q}$ such that

$$H(Q_*|R) = \inf_{Q \in \mathcal{Q}} H(Q|R) \in [0, \infty).$$

Moreover, $Q_* \gg Q$ for any $Q \in \mathcal{Q}_{fin}$.

(b) $Q_0 \in \mathcal{Q}$ is the minimizer Q_* if and only if $Z_0 := dQ_0/dR$ exists and

$$E^Q[\log Z_0] \geq H(Q_0|R)$$
 for all $Q \in Q_{fin}$

- ullet If $\mathcal Q$ is weakly compact, existence also follows $H(\cdot|R)$ being LSC
- (b) is the first-order condition of optimality. Often holds with equality

Outline

- Entropic Optimal Transport
- 2 Relative Entropy (KL Divergence)
- Minimizing Relative Entropy
- 4 Schrödinger Bridges
- 5 EOT Potentials and Dual Problem
- 6 Convergence of EOT to OT

Static Schrödinger Bridge Problem

Given a reference measure $R \in \mathcal{P}(X \times Y)$, the static Schrödinger bridge problem is

$$\min_{\pi\Pi(\mu,\nu)} H(\pi|R)$$

• EOT is a special case:

$$\pi_{arepsilon} = rg \min_{\Pi(\mu,
u)} H(\,\cdot\,|R) \qquad ext{for} \qquad dR := rac{e^{-c/arepsilon}}{E^P[e^{-c/arepsilon}]} d(\mu \otimes
u)$$

Note that $R \sim \mu \otimes \nu$ in this case

- \rightarrow General result on entropy minimization implies existence and uniqueness of π_{ε}
 - As $\Pi(\mu, \nu)$ is weakly compact (assuming Polish spaces), this also follows directly from LSC and strict convexity
 - $\pi_{\varepsilon} \sim \mu \otimes \nu$ as $\mu \otimes \nu \in \Pi(\mu, \nu)$
 - Conversely, we can define c from R if $R \ll \mu \otimes \nu$

Detour: Dynamic Schrödinger Bridge Problem

Given: $\mu, \nu \sim \mathcal{L}^d$ on \mathbb{R}^d and a reference probability measure \mathbb{P} on $\mathcal{C}([0,1];\mathbb{R}^d)$

Problem: Find law \mathbb{Q} on $\mathcal{C}([0,1];\mathbb{R}^d)$

- ullet with marginals $\mathbb{Q}_0=\mu$ at t=0 and $\mathbb{Q}_1=
 u$ at t=1
- ightarrow joint marginal \mathbb{Q}_{01} at t=(0,1) is element of $\Pi(\mu,
 u)$
 - minimizing $H(\mathbb{Q}|\mathbb{P})$
 - For simplicity, we take $\mathbb{P}=\mathbb{W}$ the law of a Brownian motion with some 1 initial distribution $\tilde{\mu}\sim\mathcal{L}^d$
 - ullet Let also $ilde{
 u}\in \mathcal{P}(\mathbb{R})$ be equivalent to Lebesgue, e.g., $\mathcal{N}(0,1)$
 - $\mathbb{W}_{01}(dx, dy) \propto e^{-\|x-y\|^2/2} \tilde{\mu}(dx) dy = e^{-\|x-y\|^2/2 g(y)} \tilde{\mu}(dx) \tilde{\nu}(dy)$ where $g = \log(d\tilde{\nu}/dy)$

¹Instead of a "reversible Brownian motion" which has time-t marginals = Lebesgue measure. See Léonard (2014), A survey of the Schrödinger problem and some of its connections with optimal transport

Solution:

 \bullet Disintegrate any admissible law $\mathbb Q$ as

$$\mathbb{Q}=\mathbb{Q}_{01}(\mathit{dx},\mathit{dy})\otimes\mathbb{Q}^{x,y}$$

where

- $\mathbb{Q}_{01}(dx, dy) \in \Pi(\mu, \nu)$ joint marginal at (0, 1)
- conditional law $\mathbb{Q}^{x,y}$, i.e., law of a process starting at x and ending at y
- Recall additivity property

$$H(\mathbb{Q}|\mathbb{W}) = H(\mathbb{Q}_{01}|\mathbb{W}_{01}) + \int H(\mathbb{Q}^{x,y}|\mathbb{W}^{x,y}) d\mathbb{Q}_{01}$$

- Second term minimized by taking $\mathbb{Q}^{x,y} = \mathbb{W}^{x,y} = \text{Brownian bridge}$ from x to y
- Minimizing first term = static SB problem with

$$R = \mathbb{W}_{01} \propto e^{-\|x-y\|^2/2} \mathbb{W}_0(dx) \mathbb{W}_1(dy)$$

- Argmin is the same as for $R \propto e^{-\|x-y\|^2/2} \mu(dx) \nu(dy)$
- I.e., the EOT problem with cost $c(x, y) = ||x y||^2/2$

Outline

- Entropic Optimal Transport
- 2 Relative Entropy (KL Divergence)
- Minimizing Relative Entropy
- 4 Schrödinger Bridges
- 5 EOT Potentials and Dual Problem
- 6 Convergence of EOT to OT

Form of the Optimal Coupling

- (a) Optimal density is given by potentials:
 - There exist measurable functions $\varphi_{\varepsilon}: \mathsf{X} \to \mathbb{R}$, $\psi_{\varepsilon}: \mathsf{Y} \to \mathbb{R}$ such that

$$\frac{d\pi_\varepsilon}{d(\mu\otimes\nu)}=\exp\left(\frac{\varphi_\varepsilon\oplus\psi_\varepsilon-c}{\varepsilon}\right)\quad\mu\otimes\nu\text{-a.s.}$$

• The functions $\varphi_{\varepsilon}, \psi_{\varepsilon}$ (called EOT or Schrödinger potentials) are a.s. unique up to an additive constant: if $\tilde{\varphi}_{\varepsilon}, \tilde{\psi}_{\varepsilon}$ are potentials, then

$$\tilde{\varphi}_{\varepsilon}=\varphi_{\varepsilon}+\mathsf{a},\quad \tilde{\psi}_{\varepsilon}=\psi_{\varepsilon}-\mathsf{a} \text{ for some } \mathsf{a}\in\mathbb{R}.$$

- Our assumption $c \in L^1(\mu \otimes \nu)$ implies $\varphi_{\varepsilon} \in L^1(\mu)$ and $\psi_{\varepsilon} \in L^1(\nu)$.
- (b) Form implies optimality:
 - Let $\pi \in \Pi(\mu, \nu)$ have the form

$$\frac{d\pi}{d(\mu \otimes \nu)} = \exp\left(\frac{\varphi \oplus \psi - c}{\varepsilon}\right)$$

for some measurable $\varphi: \mathsf{X} \to [-\infty, \infty)$, $\psi: \mathsf{Y} \to [-\infty, \infty)$.

Then $\pi = \pi_{\varepsilon}$ and φ, ψ are EOT potentials.

EOT Cost and Potentials

$$\begin{split} \mathsf{EOT}_{\varepsilon} &= \int c \ d\pi_{\varepsilon} + \varepsilon H(\pi_{\varepsilon}|\mu \otimes \nu) \\ &= \int c \ d\pi_{\varepsilon} + \varepsilon \int \log \exp \left(\frac{\varphi_{\varepsilon} \oplus \psi_{\varepsilon} - c}{\varepsilon} \right) \ d\pi_{\varepsilon} \\ &= \int c \ d\pi_{\varepsilon} + \int \varphi_{\varepsilon} \oplus \psi_{\varepsilon} \ d\pi_{\varepsilon} - \int c \ d\pi_{\varepsilon} \\ &= \int \varphi_{\varepsilon} \ d\mu + \int \psi_{\varepsilon} \ d\nu \end{split}$$

Dual Problem

Unconstrained dual problem of EOT:

$$\begin{aligned} \mathsf{DUAL}_{\varepsilon} &= \sup_{\varphi \in L^{1}(\mu), \, \psi \in L^{1}(\nu)} \int \varphi \, d\mu + \int \psi \, d\nu - \varepsilon \int e^{\frac{\varphi \oplus \psi - c}{\varepsilon}} \, d(\mu \otimes \nu) + \varepsilon \\ &= \sup_{\varphi \in L^{1}(\mu), \, \psi \in L^{1}(\nu)} \int \left(\varphi \oplus \psi - \varepsilon e^{\frac{\varphi \oplus \psi - c}{\varepsilon}} + \varepsilon \right) \, d(\mu \otimes \nu) \end{aligned}$$

Note: $f(z) = \varepsilon(z \log z - z + 1)$ has convex conjugate $f^*(y) = \varepsilon e^{y/\varepsilon} - \varepsilon$

Theorem:

- Dual problem has a unique (mod $\mathbb R$) solution $(\varphi_{\varepsilon},\psi_{\varepsilon})\in L^1(\mu)\times L^1(\nu)$
- Solution yields EOT potentials, and vice versa
- Strong duality holds:

$$\mathsf{EOT}_arepsilon = \mathsf{DUAL}_arepsilon = \int arphi_arepsilon \, d\mu + \int \psi_arepsilon \, d
u$$

Schrödinger System

Measurable functions $\varphi_{\varepsilon}: X \to \mathbb{R}$, $\psi_{\varepsilon}: Y \to \mathbb{R}$ are potentials if and only if they satisfy the **Schrödinger System**

$$arphi_arepsilon(\mathbf{x}) = -arepsilon \log \int e^{rac{\psi_arepsilon(\mathbf{y}) - c(\mathbf{x}, \mathbf{y})}{arepsilon}} \,
u(d\mathbf{y}) \quad \mu ext{-a.s.}, \ \psi_arepsilon(\mathbf{y}) = -arepsilon \log \int e^{rac{\psi_arepsilon(\mathbf{x}) - c(\mathbf{x}, \mathbf{y})}{arepsilon}} \, \mu(d\mathbf{x}) \quad
u ext{-a.s.}.$$

or equivalently

$$\int \exp\left(\frac{\varphi_{\varepsilon} \oplus \psi_{\varepsilon} - c}{\varepsilon}\right) d\nu = 1 \quad \mu\text{-a.s.}, \tag{1}$$

$$\int \exp\left(\frac{\varphi_{\varepsilon} \oplus \psi_{\varepsilon} - c}{\varepsilon}\right) d\mu = 1 \quad \nu\text{-a.s.}$$
 (2)

Btw: shows how to get a version of the potentials defined at every (x, y)

Schrödinger System: Interpretation/Proof

$$\int \exp\left(\frac{\varphi_{\varepsilon} \oplus \psi_{\varepsilon} - c}{\varepsilon}\right) d\nu = 1 \quad \mu\text{-a.s.}, \tag{1}$$

$$\int \exp\left(\frac{\varphi_{\varepsilon} \oplus \psi_{\varepsilon} - c}{\varepsilon}\right) d\mu = 1 \quad \nu\text{-a.s.}$$
 (2)

Interpretation as Marginal Density Condition:

- Read $1 = \frac{d\mu}{d\mu}$ in (1). Then (1) $\Leftrightarrow \exp\left(\frac{\varphi_{\varepsilon} \oplus \psi_{\varepsilon} c}{\varepsilon}\right)$ is density (w.r.t. $\mu \otimes \nu$) of a measure with 1st marginal $= \mu$
- Thus Schrödinger System $\Leftrightarrow \exp\left(\frac{\varphi_{\varepsilon} \oplus \psi_{\varepsilon} c}{\varepsilon}\right)$ is density of a coupling

Interpretation as Dual FOC:

- Since potentials are dual maximizers of the (unconstrained, concave) dual problem, they satisfy the first-order condition with equality
- Conversely, FOC implies optimality in the dual problem

c-Conjugate for EOT

- ullet Let $\psi: \mathsf{Y} \to \mathbb{R}$ be measurable (and the integral below finite)
- In analogy to OT, consider the (c,ε) -conjugate

$$\psi^{c,\varepsilon}(x) := -\varepsilon \log \int e^{\frac{\psi(y) - c(x,y)}{\varepsilon}} \nu(dy)$$

• Symmetrically, $\varphi(x)$ determines a function $\varphi^{c,\varepsilon}(y)$

Dual Interpretation:

- ullet Write \mathcal{D} for the dual objective
- Then $\psi^{c,\varepsilon} = \arg\max_{\varphi} \mathcal{D}(\varphi, \psi)$
- In particular, $\mathcal{D}(\psi^{c,\varepsilon},\psi) \geq \mathcal{D}(\varphi,\psi)$
- Iterate this? Later: Sinkhorn-Knopp (IPFP) algorithm

Primal Interpretation:

• Fit one marginal: $\psi^{c,\varepsilon}$ is such that $\exp\left(\frac{\psi^{c,\varepsilon}\oplus\psi-c}{\varepsilon}\right)$ is density (w.r.t. $\mu\otimes\nu$) of a measure with 1st marginal $=\mu$

Regularity of (c, ε) -Conjugate

Recall:

$$\psi^{c,\varepsilon}(x) := -\varepsilon \log \int e^{\frac{\psi(y) - c(x,y)}{\varepsilon}} \nu(dy)$$

Example 1: If c is L-Lipschitz on $\mathbb{R}^d \times \mathbb{R}^d$, then $\psi^{c,\varepsilon}$ is also L-Lipschitz:

$$\psi^{c,\varepsilon}(x) - \psi^{c,\varepsilon}(\tilde{x}) = -\varepsilon \log \int e^{\frac{\psi(y) - c(x,y)}{\varepsilon}} \nu(dy) + \varepsilon \log \int e^{\frac{\psi(y) - c(\tilde{x},y)}{\varepsilon}} \nu(dy)$$

$$\leq -\varepsilon \log \int e^{\frac{\psi(y) - c(x,y)}{\varepsilon}} \nu(dy) + \varepsilon \log \int e^{\frac{\psi(y) - c(x,y) + L||x - \tilde{x}||}{\varepsilon}} \nu(dy)$$

$$\leq L||x - \tilde{x}||$$

More generally: $c(\cdot, y)$ $\omega(\cdot)$ -continuous $\forall y$ implies $\psi^{c,\varepsilon}$ ω -continuous

Example 2: If c is differentiable (and sufficiently integrable), get derivatives of $\psi^{c,\varepsilon}(x)$ by differentiating under the integral

Regularity of Potentials

Apply this to the potentials:

- If $\psi = \psi_{\varepsilon}$, then $\psi^{c,\varepsilon} = \varphi_{\varepsilon}$ a.s. by Schrödinger system
- ullet Similarly for $\psi_{arepsilon}$
- Hence, $(\varphi_{\varepsilon}, \psi_{\varepsilon})$ are conjugates of one another (after choosing versions)
- In particular, we can get regularity estimates for the potentials from the properties of c
- E.g., if $c(x,y) = \|x-y\|^2$ and μ,ν are supported in unit ball, potentials are smooth with C^k norms independent of μ,ν (for any k)
- Many applications (later)

Proof of Existence of Potentials by Solving Dual Problem

- Suppose μ, ν compactly supported, c continuous (hence bounded, UC)
- Consider $(\varphi_n, \psi_n)_{n\geq 1}$ maximizing sequence of dual problem:

$$\mathcal{D}(\varphi_n, \psi_n) \uparrow \mathsf{DUAL}_{\varepsilon}$$

- Normalize $\int \varphi_n d\mu = \int \psi_n d\nu$ (or similar)
- "Improved" sequence

$$(\tilde{\varphi}_n, \tilde{\psi}_n) := (\psi_n^{c,\varepsilon}, (\psi_n^{c,\varepsilon})^{c,\varepsilon})$$

is again maximizing

- Equicontinuous and uniformly bounded (latter uses normalization)
- Arzelà–Ascoli yields a uniformly convergent subsequence
- Limit (φ_*, ψ_*) is an optimizer in the dual problem
- FOC shows (φ_*, ψ_*) are potentials

Outline

- Entropic Optimal Transport
- 2 Relative Entropy (KL Divergence)
- Minimizing Relative Entropy
- 4 Schrödinger Bridges
- 5 EOT Potentials and Dual Problem
- 6 Convergence of EOT to OT

Convergence of EOT to OT

As the regularization parameter $\varepsilon \to 0$, we may hope that (under regularity conditions, including c continuous):

- ullet Optimal costs converge: $\mathsf{EOT}_{arepsilon} o \mathsf{OT}$
- Optimal couplings converge: $\pi_{\varepsilon} \to \pi_0$, where π_0 is an OT
- Dual potentials converge: $\varphi_{\varepsilon} \to \varphi_0$ and $\psi_{\varepsilon} \to \psi_0$

Convergence Rate of the EOT Cost

• For c Lipschitz:

$$\mathsf{EOT}_arepsilon - \mathsf{OT} \leq darepsilon \log \left(rac{1}{arepsilon}
ight) + \mathcal{K}arepsilon$$

Leading term sharp for c(x,y) = ||x - y|| and particular marginals

• For c with bounded second derivative, factor d improved to d/2:

$$\mathsf{EOT}_{arepsilon} - \mathsf{OT} \leq rac{d}{2} arepsilon \log \left(rac{1}{arepsilon}
ight) + K arepsilon$$

Leading term is exact for certain c including $c(x,y) = ||x-y||^2$ when marginals are regular

Sketch of Proof of Lipschitz Rate (using "Shadows")²

- Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$ have finite first moment; c L-Lipschitz
- Idea: start with OT optimizer π_0 , build π^{ε} that is close to optimal for OT but has controlled relative entropy
- Given $\pi \in \Pi(\mu, \nu)$ and $(\tilde{\mu}, \tilde{\nu})$, define the shadow $\tilde{\pi} \in \Pi(\tilde{\mu}, \tilde{\nu})$ by

$$\begin{array}{ccc} \mu & \xrightarrow{\pi} & \nu \\ w_{1}\text{-opt} \uparrow & & \downarrow w_{1}\text{-opt} \\ \tilde{\mu} & \xrightarrow{\tilde{\pi}} & \tilde{\nu} \end{array}$$

Construction and Data Processing Inequality imply

$$\mathcal{W}_1(\pi,\hat{\pi}) = \mathcal{W}_1(\mu,\tilde{\mu}) + \mathcal{W}_1(\nu,\tilde{\nu}),$$

 $H(\tilde{\pi}|\tilde{\mu}\otimes\tilde{\nu}) \leq H(\pi|\mu\otimes\nu)$

²Details: Eckstein, Nutz (2024), Convergence Rates for Regularized Optimal Transport via Quantization. A version of the "block approximation;" see Carlier, Pegon, Tamanini (2023), Convergence rate of general entropic optimal transport costs

Sketch of Proof of Lipschitz Rate

- Fact 1: If ν_n is supported on n points and $\pi \in \Pi(\mu \otimes \nu_n)$, then $H(\pi | \mu \otimes \nu_n) \leq \log n$
- Fact 2: $\exists \nu_n$ supported on n points with $W_1(\nu,\nu_n) \leq Cn^{-1/d}$
- Start with optimal transport $\pi_0 \in \Pi(\mu, \nu)$. Consider ν_n as in Fact 2.
- Take $\hat{\pi} := \text{shadow of } \pi \text{ in } \Pi(\mu, \nu_n)$
- Take $\pi_n := \text{shadow of } \hat{\pi} \text{ in } \Pi(\mu, \nu)$
- Then

$$H(\pi_n|\mu\otimes\nu) \leq H(\hat{\pi}|\mu\otimes\nu_n) \leq \log n,$$

$$\int c \,d\pi_n \leq \int c \,d\pi_0 + LW_1(\nu,\nu_n) \leq \mathsf{OT} + LCn^{-1/d}$$

- Using π_n for EOT \Rightarrow EOT $_{\varepsilon} \leq$ OT $+ LCn^{-1/d} + \varepsilon \log n$
- Choosing $n := (1/\varepsilon)^d$ yields $\mathsf{EOT}_\varepsilon \le \mathsf{OT} + LC\varepsilon + d\varepsilon \log(1/\varepsilon)$