Assignment for Day 2 SLMath Statistical Optimal Transport

Marcel Nutz, Columbia University

Exercise 1. Consider the entropic optimal transport problem EOT_{ε} with costs c(x,y) and $\tilde{c}(x,y) = c(x,y) + a(x) + b(y)$ where $a \in L^1(\mu)$ and $b \in L^1(\nu)$. Show that the corresponding problems $EOT_{\varepsilon}(c)$ and $EOT_{\varepsilon}(\tilde{c})$ have the same optimal couplings. What is the relation between the optimal costs? And the dual solutions?

Exercise 2. Generalizing our problem

$$EOT_{\varepsilon} := \inf_{\pi \in \Pi(\mu, \nu)} \int c \, d\pi + \varepsilon H(\pi | \mu \otimes \nu),$$

consider another pair (μ', ν') of marginals and

$$EOT'_{\varepsilon} := \inf_{\pi \in \Pi(\mu, \nu)} \int c \, d\pi + \varepsilon H(\pi | \mu' \otimes \nu').$$

Show that

$$EOT'_{\varepsilon} = EOT_{\varepsilon} + \varepsilon H(\mu|\mu') + \varepsilon H(\nu|\nu')$$

and, if EOT'_{ε} is finite, that both problems have the same minimizer $\pi_{\varepsilon} \in \Pi(\mu, \nu)$.

Exercise 3. Explicitly solve the EOT_{\varepsilon} problem when the marginals (on \mathbb{R}) are $\mu = \mathcal{N}(m_0, \sigma^2)$ and $\mu = \mathcal{N}(m_1, \sigma^2)$ while $c(x, y) = |y - x|^2/2$.

Exercise 4. Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$ be compactly supported and let $c : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ be L-Lipschitz. Detail the Arzelà–Ascoli argument (sketched in the lecture) to prove that the dual problem of EOT has a solution. Using that result, prove $DUAL_{\varepsilon} \geq EOT_{\varepsilon}$.

Complete the proof of strong duality by also showing the (easier) "weak duality" inequality $DUAL_{\varepsilon} \leq EOT_{\varepsilon}$.

Exercise 5. Let $c \in L^1(\mu \otimes \nu)$ be continuous and bounded from below. Let π_{ε} be the optimal coupling for EOT_{ε} . In the limit $\varepsilon \to 0$, show that there are cluster points (for weak convergence), and show that any cluster point π_0 is a solution of the unregularized optimal transport problem. If the latter has a unique solution π_0 , conclude that $\pi_{\varepsilon} \to \pi_0$.

Exercise 6. Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$ be compactly supported and let $c : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ be L-Lipschitz. Let $(\varphi_{\varepsilon}, \psi_{\varepsilon})$ be EOT potentials for regularization parameter $\varepsilon > 0$, normalized such that $\int \varphi_{\varepsilon} d\mu = \int \psi_{\varepsilon} d\nu$. Show that in the limit $\varepsilon \to 0$, there are cluster points (for uniform convergence), and show that any cluster point (φ_0, ψ_0) is a dual solution of the unregularized optimal transport problem. If the latter has a unique solution (up to additive constant), conclude that $(\varphi_{\varepsilon}, \psi_{\varepsilon})$ converges.