SLMath Exercise Sheet 2

Jonathan Niles-Weed

This is a long list of exercises, of very different flavors. I encourage you to attempt all or most of them, but only complete those that speak to you.

1. We proved the bound $\mathbb{E}\sup_{\nu\in\mathcal{P}(B_1)}|S_{\varepsilon}(\mu_n,\nu)-S_{\varepsilon}(\mu,\nu)|\lesssim_{s,d}\varepsilon^{-s+1}n^{-1/2}$ for any s>d/2 when $\mu\in\mathcal{P}(B_1)$ and $\varepsilon<1$. Show that when $\varepsilon>1$,

$$\mathbb{E} \sup_{\nu \in \mathcal{P}(B_1)} |S_{\varepsilon}(\mu_n, \nu) - S_{\varepsilon}(\mu, \nu)| \lesssim_{s, d} n^{-1/2}, \tag{1}$$

with no dependence on ε . (Hint: it suffices to show that $||D^{\alpha}\varphi||_{\infty} \lesssim_{\alpha} 1$ when $\varepsilon > 1$.)

2. Prove the Faà di Bruno formula

$$D^{\alpha} \log j(x) = \sum_{v=1}^{|\alpha|} \frac{(-1)^{v-1}}{v} \sum_{\beta_1 + \dots + \beta_v = \alpha} \prod_{\ell=1}^{v} \frac{D^{\beta_{\ell}} j(x)}{j(x)}.$$
 (2)

in two ways:

- (a) By induction on α
- (b) By examination of the power series $\log(j(x) + y) = \log j(x) + \sum_{v=1}^{\infty} \frac{(-1)^{v-1} y^v}{v j(x)^v}$ and $j(x+z) = \sum_{\beta>0} \frac{D^{\beta} j(x) z^{\beta}}{\beta!}$.
- 3. In the lecture, we claimed that the bound $\int (1+\|\xi\|^2)^s |\bar{\Phi}(\xi)|^2 d\xi \lesssim_s \varepsilon^{-2s+2}$ for all $s \geq 1$ follows from the bound where s is a positive integer by "interpolation." This exercise justifies this claim.
 - (a) Let $t \in (0,1)$ and let $p,q \in (1,\infty)$. Via Hölder's inequality, show the L_p interpolation inequality

$$||h||_{L_r} \le ||h||_{L_p}^t ||h||_{L_q}^{1-t}$$

where $\frac{1}{r} = \frac{t}{p} + \frac{1-t}{q}$.

(b) Arguing as in part (a), show that for any integer k and $\delta \in (0,1)$,

$$\int (1 + \|\xi\|^2)^{k+\delta} |\bar{\Phi}(\xi)|^2 d\xi \le \left(\int (1 + \|\xi\|^2)^k |\bar{\Phi}(\xi)|^2 d\xi \right)^{1-\delta} \left(\int (1 + \|\xi\|^2)^{k+1} |\bar{\Phi}(\xi)|^2 d\xi \right)^{\delta}.$$
 (3)

Conclude that the bound claimed in lecture holds.

- 4. This exercise establishes some important facts about Reproducing Kernel Hilbert Spaces (RKHS). A Hilbert space \mathcal{H} of functions from a set \mathcal{X} to \mathbb{R} is an RKHS if, for each $x \in \mathcal{X}$, the evaluation functional $\delta_x : \mathcal{H} \to \mathbb{R}$ given by $f \mapsto f(x)$ is continuous.
 - (a) Using the calculation given in the lecture, verify that the Sobolev space $H^s(\mathbb{R}^d)$ is an RKHS when s > d/2.
 - (b) For each $x \in \mathcal{X}$, show the existence of a $k_x \in \mathcal{H}$ such that $f(x) = \langle k_x, f \rangle_{\mathcal{H}}$ for all $f \in \mathcal{H}$. (Hint: Riesz representation theorem.)

- (c) Using the functionals constructed in part (b), define the kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ by $k(x,y) := \langle k_x, k_y \rangle_{\mathcal{H}}$. Show that k is symmetric (i.e., k(x,y) = k(y,x)) and positive (i.e., $\sum_{i,j=1}^n a_i a_j k(x_i,x_j) \geq 0$ for all $a_1,\ldots,a_n \in \mathbb{R}$ and $x_1,\ldots,x_n \in \mathcal{X}$).
- (d) Prove the representer property: for each $x \in X$, the function $k(\cdot, x) \in \mathcal{H}$ and $\langle k(\cdot, x), f \rangle_{\mathcal{H}} = f(x)$.
- (e) Show that if $\sup_{x \in \mathcal{X}} k(x, x) < \infty$, then all the functions in \mathcal{H} are bounded. (Hint: $k(x, x) = \|k_x\|_{\mathcal{H}}^2$.)
- (f) Show that $\mathcal{H} = \overline{\operatorname{span}(k(\cdot,x): x \in \mathcal{X})}$. (Hint: it suffices to show that if $f \perp k(\cdot,x)$ for all $x \in \mathcal{X}$, then f = 0.) This shows that the kernel k completely determines H. In fact, for every symmetric, positive $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ there exists a unique (up to isomorphism) RKHS with k as its kernel.
- (g) Let (\mathcal{Y}, ν) be a measure space, and fix a function $\phi : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$. Assume that for each $x \in \mathcal{X}$ the function $y \mapsto \phi(x, y)$ lies in $L_2(Y, \nu)$. Show that the space

$$\mathcal{H} := \left\{ \int_{\mathcal{V}} \phi(x, y) g(y) \, \mathrm{d}\nu(y) : g \in L_2(\mathcal{Y}, \nu) \right\}$$
 (4)

equipped with the norm $||f||_{\mathcal{H}} := \inf\{||g||_{L_2} : f = \int_{\mathcal{Y}} \phi(\cdot, y)g(y) \,\mathrm{d}\nu(y)\}$ is an RKHS. Show that this generalizes the example of the Sobolev space considered in part (a).

- 5. (Statistical Optimal Transport, Section 2.8.2) This exercise establishes some statistical properties of RKHS's. We have already seen that $\sup_{\varphi:\|\varphi\|_{H^s}\leq 1}\int \varphi\,\mathrm{d}(\mu_n-\mu)\lesssim n^{-1/2}$. We will now show that this phenomenon is more general.
 - (a) Let \mathcal{H} be an RKHS with kernel k which satisfies $\sup_{x \in \mathcal{X}} k(x, x) < \infty$. Show that for any $\mu \in \mathcal{P}(\mathcal{X})$, the function f_{μ} defined by

$$f_{\mu}(x) = \int k(x, x') \,\mathrm{d}\mu(x') \tag{5}$$

defines an element of \mathcal{H} , which satisfies $\langle f_{\mu}, g \rangle_{\mathcal{H}} = \int g \, d\mu$ for any $g \in \mathcal{H}$. The function f_{μ} is sometimes called the "kernel mean embedding" of μ .

(b) Show that for any probability measures μ and ν ,

$$\sup_{g \in \mathcal{H}: \|g\|_{\mathcal{H}} \le 1} \int g \, \mathrm{d}(\mu - \nu) = \|f_{\mu} - f_{\nu}\|_{\mathcal{H}},$$
 (6)

where f_{μ} and f_{ν} are the kernel mean embeddings of μ and ν .

(c) Show that if μ_n is an empirical measure, then $\mathbb{E}||f_{\mu} - f_{\mu_n}|| \lesssim n^{-1/2}$. Conclude that for any RKHS whose kernel is bounded,

$$\mathbb{E} \sup_{g \in \mathcal{H}: \|g\|_{\mathcal{H}} \le 1} \int g \, \mathrm{d}(\mu_n - \mu) \lesssim n^{-1/2} \,. \tag{7}$$

6. This exercise verifies some basic facts about dual solutions to the entropic optimal transport problem. Let (f_n, g_n) be optimal solutions to the dual entropic OT problem

$$\sup_{f,g} \int f \, \mathrm{d}\mu_n + \int g \, \mathrm{d}\nu - \varepsilon \int e^{\frac{f(x) + g(y) - \frac{1}{2} \|x - y\|^2}{\varepsilon}} \, \mathrm{d}\mu_n(x) \, \mathrm{d}\nu(y) \,, \tag{8}$$

where as usual $\mu, \nu \in \mathcal{P}(B_1)$ and μ_n is an empirical measure. Write $\varphi_n(x) = \frac{1}{2} ||x||^2 - f_n(x)$.

- (a) Show that if (f_n, g_n) are optimal solutions, then so are $(f_n + c, g_n c)$ for any constant c, so there is no uniqueness in the solution to the dual problem.
- (b) Show that the normalization $\int f_n d\mu = 0$ is enough to ensure that (f_n, g_n) are unique.
- (c) Show that if the solutions are normalized such that $\int f_n d\mu = 0$, then $\sup_{x \in B_2} \varphi_n(x) \leq 3$.

- 7. This exercise gives practice with "big-Oh in probability" notation. Recall that we say that $X_n = o_p(a_n)$ for some positive sequence a_n if $a_n^{-1}X_n \stackrel{p}{\to} 0$, and $X_n = O_p(a_n)$ if for any $\varepsilon > 0$ there exists a positive R such that $\mathbb{P}\{|X_n| \leq a_n R\} \leq \varepsilon$ for all n.
 - (a) Show that if $X_n = o_p(a_n)$ and $Y_n = O_p(b_n)$, then $X_n Y_n = o_p(a_n b_n)$.
 - (b) Conclude that the quantity Δ_n as defined in the lecture is $o_p(n^{-1/2})$, as claimed.
- 8. This exercise completes the proof of the limit theorem for the Wasserstein distances on finite metric spaces.
 - (a) Prove the continuous mapping theorem, if you don't know it already: if $Z_n \stackrel{d}{\to} Z$ and g is continuous, then $g(Z_n) \stackrel{d}{\to} g(Z)$. (Hint: recall that $Z_n \stackrel{d}{\to} Z$ means that $\mathbb{E}h(Z_n) \to \mathbb{E}h(Z)$ for all continuous, bounded h.)
 - (b) Use this to show that

$$\sqrt{n} \sup_{f^* \in \mathcal{D}^*} \langle f^*, \mu_n - \mu \rangle \xrightarrow{d} \sup_{f^* \in \mathcal{D}^*} \langle f^*, G \rangle, \tag{9}$$

where $G \sim \mathcal{N}(0, \Sigma)$, with $\Sigma_{ii} = \mu_i(1 - \mu_i)$.

- 9. Since $\sqrt{n}W_p^p(\mu_n,\nu) \geq 0$, the same property must hold for its distributional limit. Use the expression developed in lecture to verify that this is the case.
 - (a) Show that, when $\mu = \nu$, the set \mathcal{D}^* satisfies

$$\mathcal{D}^* = \{ f \in \mathbb{R}^k : f(x) - f(x') \le d^p(x, x') \}$$
 (10)

- (b) Conclude that, in this case, $\sup_{f^* \in \mathcal{D}^*} \langle f^*, G \rangle \geq 0$, and that it is almost surely positive if μ is supported on at least 2 points.
- 10. Mimic the analysis of the entropic optimal transport problem to show that if $f_n \in \mathcal{D}_n$ is a sequence of optimal dual solutions for (μ_n, ν) and if f_{∞} is any limit point, then $f_{\infty} \in \mathcal{D}^*$ almost surely.
- 11. Let $\nu \in \mathcal{P}_2(\mathbb{R}^d)$ be an absolutely continuous probability measure such that ν has positive density on int supp ν and such that supp ν is convex, and let $\mu \in \mathcal{P}_2(\mathbb{R}^d)$ be arbitrary. Show that the optimal solution to the dual problem

$$\sup_{\psi} \int ||x||^2 - 2\psi^*(x) \,\mathrm{d}\mu + \int ||y||^2 - 2\psi(y) \,\mathrm{d}\nu \tag{11}$$

is unique up to a constant shift. Defining ϕ to be the convex conjugate of the optimal ψ yields a canonical pair of optimal potentials, up to constant shift. (Hint: Brenier's theorem implies that $\nabla \psi$ is well defined and unique almost everywhere on int supp ν .)

- 12. This exercise justifies the variance bounds presented in Lecture 4.
 - (a) Prove the Efron–Stein inequality, if you don't know it already: let X_1, \ldots, X_n be i.i.d. random variables, let $Z = f(X_1, \ldots, X_n)$ for some function f, and write $Z_i = f(X_1, \ldots, X_i', \ldots, X_n)$ for a version of Z where X_i is replaced by an independent copy X_i' . Then

$$\operatorname{Var}(Z) \le \sum_{i=1}^{n} \mathbb{E}(Z - Z_i)_{+}^{2}. \tag{12}$$

(Hint: Let $\Delta_i = \mathbb{E}[Z \mid X_1, \dots, X_i] - \mathbb{E}[Z \mid X_1, \dots, X_{i-1}]$. Show that $\operatorname{Var}(Z) = \sum_{i=1}^n \mathbb{E}\Delta_i^2$. Then, show that $\mathbb{E}\Delta_i^2 \leq \mathbb{E}(Z - \mathbb{E}[Z \mid \{X_j : j \neq i\}])^2$. Finally, use the identity $\operatorname{Var}(W) = (W - W')_+^2$, whenever W' is an i.i.d. copy of W.)

- (b) Let (\mathcal{X}, d) be any compact metric space, and let $\mu, \nu \in \mathcal{P}(\mathcal{X})$ be arbitrary. Use the Efron-Stein inequality to prove that $Var(W_2^2(\mu_n, \nu)) \lesssim n^{-1}$. (Hint: view $W_2^2(\mu_n, \nu)$ as a function of n i.i.d. samples from μ .)
- (c) Let ν satisfy the assumptions of the previous problem, so that there exist unique dual solutions for the 2-Wasserstein distance ν and any element of $\mathcal{P}_2(\mathbb{R}^d)$. Assume that μ and ν are compactly supported. Let μ_n be the empirical measure corresponding to (X_1, \ldots, X_n) and let μ'_n correspond to (X'_1, X_2, \ldots, X_n) . We aim to show that $\operatorname{Var}\left(W_2^2(\mu_n, \nu) - \int (\|\cdot\|^2 - 2\varphi^*) \,\mathrm{d}\mu_n\right) = o(n^{-1})$, where φ^* is the (unique) optimal dual solution for (μ, ν)
 - i. Let φ_n be the unique optimal dual solution for (μ_n, ν) . Show that, up to a constant shift, $\varphi_n \to \varphi^*$ uniformly on the support of μ almost surely.
 - ii. Using the Efron–Stein inequality, argue that it suffices to prove that $n^2\mathbb{E}(R_n-R_n')_+^2\to 0$,
 - where $R_n = W_2(\mu_n, \nu) \int (\|\cdot\|^2 2\varphi^*) d\mu_n$ and $R'_n = W_2(\mu'_n, \nu) \int (\|\cdot\|^2 2\varphi^*) d\mu'_n$. iii. Show that $R_n R'_n \leq \frac{2}{n}((\varphi^*(X_1) \varphi_n(X_1)) (\varphi^*(X_1') \varphi_n(X_1')))$. Conclude that $n^2(R_n R'_n)^2_+ \lesssim \|\varphi^* \varphi_n\|^2_{L_{\infty}(\mu)}$.
 - iv. Argue that $\mathbb{E}\|\varphi^* \varphi_n\|_{L_{\infty}(\mu)}^2 \to 0$.