SLMath June 12, 2025

SLMath Summer School on OT: Day 5 - Problem Set 1

1. (First order method to solve OT: Alternative of Sinkhorn) Consider the MK optimal transport problem between two discrete measures $\mu := \sum_{i=1}^n a_i \delta_{x_i}$ and $\nu := \sum_{j=1}^m b_j \delta_{y_j}$ where $\sum_{i=1}^n a_i = 1$ and $\sum_{j=1}^m b_j = 1$:

$$\min_{\pi \in \mathbb{R}_{+}^{m \times n}} \sum_{i=1}^{n} \sum_{j=1}^{m} c(x_{i}, y_{j}) \pi_{i, j}, \text{ s.t. } \mathbf{1}^{T} \pi = \mathbf{a}^{T}, \pi \mathbf{1} = \mathbf{b}.$$

Suppose we stack all the columns of π in a single vector x. Let encode all the constraints $\mathbf{1}^T \pi = \mathbf{a}^T, \pi \mathbf{1} = \mathbf{b}$ on π matrix in the above optimization problem as Ax = d for some $A \in \mathbb{R}^{(n+m) \times nm}$ and $d \in \mathbb{R}^{n+m}$. One can then rewrite the MK problem as

$$\min_{x \in \mathbb{R}^{mn}_{\perp}} \mathbf{c}^T x, \text{ s.t. } Ax = d$$

where $\mathbf{c} \in \mathbb{R}^{nm}$ is obtained by stacking all the columns of the cost matrix c in a single vector. Let us reparametrize x as $x = u \odot u$ for some $u \in \mathbb{R}^{nm}$, i.e., $x_i = u_i^2$ for $1 \le i \le nm$. Suppose u_t is the continuous time gradient descent to solve this minimization problem $\min_{u \in \mathbb{R}^{nm}} ||A(u \odot u) - d||^2$ starting from the initial condition u_0 where $u_0(i) = \exp(-\frac{\mathbf{c}_i}{2\epsilon})$, i.e.,

$$\frac{d}{dt}u_t = -u_t \odot \Big(A^T(A(u \odot u) - d)\Big).$$

Show that if $u_t \to u_\infty$, then,

$$u_{\infty} \odot u_{\infty} = \operatorname{argmin}_{x \in \mathbb{R}^{mn}_{+}, Ax = d} \left\{ \mathbf{c}^{T} x + \epsilon \sum_{i=1}^{nm} x_{i} \log(x_{i}/e) \right\}.$$

Also code this gradient descent to see if it actually work.

2. (Linear Convergence of Sinkhorn for bounded cost) For any $\phi \in L^1(\mu)$ and $\psi \in L^1(\nu)$, define

$$G(\phi, \psi) = \int \phi d\mu + \int \psi d\nu - \int e^{\phi(x) + \psi(y) - c(x,y)} d(\mu(x) \otimes \nu(y)) + 1.$$

Let (ϕ_*, ψ_*) be the unique EOT potential between μ and ν w.r.t. an uniformly bounded cost function c. Let (ϕ_t, ψ_t) be the Sinkhorn potential upto the time step t. We seek to show that

$$G(\phi_*, \psi_*) - G(\phi_t, \psi_t) \le \beta^t \big(G(\phi_*, \psi_*) - G(\phi_0, \psi_0) \big)$$
$$\|\phi_* - \phi_t\|_{L^2(\mu)}^2 + \|\psi_* - \psi_t\|_{L^2(\nu)}^2 \le \beta_0 \beta^t \big(G(\phi_*, \psi_*) - G(\phi_0, \psi_0) \big)$$

where $\beta := 1 - e^{-24\|c\|_{\infty}} \in (0,1)$ and $\beta_0 := 2e^{6\|c\|_{\infty}}$. We break it down into few stages:

SLMath June 12, 2025

• Step 1 Show that for any $\phi, \phi' \in L^2(\mu)$ and $\psi, \psi' \in L^2(\nu)$ satisfying $\phi \oplus \psi - c \ge -\alpha$ and $\phi' \oplus \psi' - c \ge -\alpha$,

$$G(\phi', \psi') - G(\phi, \psi) \ge \int \partial_1 G(\phi', \psi')(x) [\phi'(x) - \phi(x)] \mu(dx)$$

$$+ \int \partial_2 G(\phi', \psi')(y) [\psi'(y) - \psi(y)] \nu(dy)$$

$$+ \frac{e^{-\alpha}}{2} (\|\phi' - \phi\|_{L^{(\mu)}}^2 + \|\psi - \psi'\|_{L^2(\nu)}^2)$$

where

$$\partial_1 G(\phi', \psi')(x) = 1 - \int e^{\phi'(x) + \psi'(y) - c(x,y)} \nu(dx)$$
$$\partial_2 G(\phi', \psi')(y) = 1 - \int e^{\phi'(x) + \psi'(y) - c(x,y)} \mu(dx)$$

- Step 2 Now show that $\phi_t \oplus \psi_t c \ge -6\|c\|_{\infty}$ and $\phi_t \oplus \psi_{t+1} c \ge -6\|c\|_{\infty}$ for all $t \ge 0$.
- Step 3 Set $\sigma := e^{-6\|c\|_{\infty}}$. Use the previous two steps to show that

$$G(\phi_t, \psi_t) - G(\phi_*, \psi_*) \ge -\frac{1}{2\sigma} \|\partial_2 G(\phi_t, \psi_t) - \partial_2 G(\phi_t, \psi_{t+1})\|^2 + \frac{\sigma}{2} \|\phi_t - \phi_*\|_2^2.$$

• Step 4 Now show that

$$\|\partial_2 G(\phi_t, \psi_t) - G(\phi_t, \psi_{t+1})\|_{L^2(\mu)}^2 \le \frac{1}{\sigma^2} \|\psi_t - \psi_{t+1}\|_{L^2(\nu)}^2$$

• **Step 5** Use again the Taylor expansion of *G* like as in the first step to show that

$$G(\phi_{t+1}, \psi_{t+1}) - G(\phi_t, \psi_t) \ge \frac{\sigma}{2} (\|\phi_{t+1} - \phi_t\|_{L^{1}(\mu)}^2 + \|\psi_{t+1} - \psi_t\|_{L^{2}(\nu)}^2)$$

• Step 6 Combine last three steps to show that

$$G(\phi_*, \psi_*) - G(\phi_t, \psi_t) \le \frac{1}{\sigma^4} (G(\phi_{t+1}, \psi_{t+1}) - G(\phi_t, \psi_t)).$$

From Step 6, derive the recursive relation $\Delta_t \leq \frac{1}{\sigma^4}(\Delta_{t+1} - \Delta_t)$ for $\Delta_t := G(\phi_*, \psi_*) - G(\phi_t, \psi_t)$ and hence, $\Delta_t \leq (1 - \sigma^4)^t \Delta_0$. Use similar argument in Step 5 to show that

$$(\|\phi_t - \phi_*\|_{L^{(\mu)}}^2 + \|\psi_t - \psi_*\|_{L^2(\nu)}^2) \le \frac{2}{\sigma} (G(\phi_*, \psi_*) - G(\phi_t, \psi_t))$$
$$\le \frac{2}{\sigma} (1 - \sigma^4)^t.$$

SLMath June 12, 2025

3. (Sinkhorn as Mirror Gradient Descent) Consider a differentiable function $H: \mathcal{P}^+(\mathcal{Y}) \to \mathbb{R}$ that we wish to minimize without constraints $(\mathcal{P}^+(\mathcal{Y}))$ denotes the set of positive measure on \mathcal{Y}). Let $G: \mathcal{P}^+(\mathcal{Y}) \to \mathbb{R}$ be a differentiable strictly convex function. The *Bregman divergence* of G is defined by

$$G(\rho_1|\rho_2) = G(\rho_1) - G(\rho_2) - \langle G'(\rho_2), \rho_1 - \rho_2 \rangle.$$

Here G' denotes the first variation of G, i.e., $G'(\rho)(h) = \lim_{\epsilon \to 0} (G(\rho + \epsilon \delta_h) - G(\rho))/\epsilon$. The gradient descent iteration with a Bregman divergence based on G, also called *mirror descent*, takes the form

$$\rho_{n+1} = \operatorname{argmin}_{\rho} \left\{ H(\rho_n) + \langle H'(\rho_n), \rho - \rho_n \rangle + G(\rho | \rho_n), \right\}$$

for all $n \geq 0$, where H' denotes the Frechét derivative of H. The optimality conditions are given by

$$G'(\rho_{n+1}) - G'(\rho_n) = -H'(\rho_n).$$

Recall the Sinkhorn updates (ϕ_t, ψ_t) (to compute EOT between μ and ν) where $\phi_0 = 0$. For any probability measure $\omega \in \mathcal{P}(\mathcal{Y})$, define

$$F(\omega) := \sup_{\phi,\psi} \Big\{ \int \phi d\mu + \int \psi d\omega - \int \int (e^{\phi(x) + \psi(y) - c(x,y)} - 1) d\mu(x) d\omega(y) \Big\}.$$

Let ν_t be the marginal of $\pi_{2t} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ where $\frac{d\pi_{2t}}{d(\mu \otimes \nu)}(x, y) \propto e^{-c(x, y) + \phi_{t-1}(x) + \psi_t(y)}$. Show that

$$F'(\nu_{t+1}) - F'(\nu_t) = -\mathrm{KL}'(\nu_t||\nu)$$