SLMath Summer School on OT: Day 6- Problem Set 2

- 1. (Absolute Continuity of Push-Forward Measures) Let \mathcal{X} and \mathcal{Y} be two measurable space, $f: \mathcal{X} \mapsto \mathcal{Y}$ be a measurable function. Let $\mu \in \mathcal{P}(\mathcal{X})$ be a probability measure and $v \in L^p(\mu; \mathcal{X})$. Then $f\#(v\mu)$ is a signed measure measure on \mathcal{X} satisfying the following properties:
 - $f \# (v \mu) \ll f_{\#}(\mu)$.
 - Let w be the Radon-Nikodym derivative of $f\#(v\mu)$ w.r.t. $f\#(\mu)$. Then,

$$||w||_{L^p(f\#\mu;\mathcal{X})} \le ||v||_{L^p(\mu;\mathcal{X})}$$

2. Suppose $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu \in \mathcal{P}(\mathcal{Y})$ where $\mathcal{X}, \mathcal{Y} \subset \mathbb{R}^d$. Define $f_t : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^d$ for any $t \in [0,1]$ as $f_t(x,y) = (1-t)x + ty$. Let π^K be the Monge-Kantorovich coupling between μ and ν w.r.t. the squared-distance cost function. Define $\mu_t := f_t \# \pi^K$ and $\nu_t := f_t \# ((y-x)\pi^K)$. Let v_t be the Radon-Nikodym derivative of ν_t w.r.t. μ_t . Then show the following:

$$\int \|v_t(x)\|^2 d\mu_t(x) = \int \|y - x\|^2 d\pi^K(x, y).$$

• Show that (μ_t, v_t) satisfies the continuity equation, i.e.,

$$\frac{d\mu_t}{dt} + \operatorname{div}(\mu_t v_t) = 0.$$