

Interval Newton's Method

This lecture covers the interval (validated) version Newton's method:

Interval Newton method (1D) & Krawczyk method (nD),

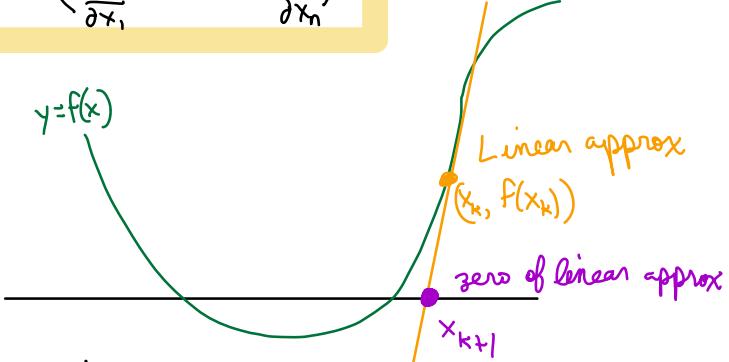
both theoretical & practical considerations.

The function space version will appear as the Newton-Kantorovich Theorem in a separate lecture.

Jacobian $f: \mathbb{R}^n \rightarrow \mathbb{R}^n$ $Df(x_k) \in \mathbb{R}^{n \times n}$

$$Df(x_k) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & & \\ \frac{\partial f_n}{\partial x_1} & \dots & \dots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}$$

Traditional
Newton's Method



an iterative method for x_{k+1} based on x_k
starting from an initial point x_0 .

Idea: Find the zero of the linearized map at x_k

$$1D: x_{k+1} = x_k - f(x_k) / f'(x_k)$$

$$nD: x_{k+1} = x_k - (Df(x_k))^{-1} f(x_k) \leftarrow \text{DO NOT DO THIS!}$$

Numerically: Never invert a matrix!

Mathematically Equivalently, numerically better:

$$\textcircled{1} \text{ Solve } Df(x_k) v_k = -f(x_k) \text{ for } v_k$$

$$\textcircled{2} \text{ Let } x_{k+1} = x_k + v_k$$

Theorem (Traditional Newton's Method)

Let $f \in C^2$, $f(x_*) = 0$, $Df(x_*)$ nonsingular

Then there exists $\epsilon > 0$ such that

for all $x_0 \in B_\epsilon(x_*)$,

$$\textcircled{1} \quad \lim_{k \rightarrow \infty} x_k = x_*$$

$$\textcircled{2} \quad \text{Let } e_k = \|x_* - x_k\| - \text{error at } k^{\text{th}} \text{ step}$$

$$\text{Then } \lim_{k \rightarrow \infty} \frac{e_{k+1}}{e_k^2} = C < \infty$$

This is called quadratic convergence

$$\textcircled{3} \quad \text{In 1D, } C = \left| \frac{f''(x_*)}{2f'(x_*)} \right|$$

Problems : - What is ϵ ? ie Will it even converge?
 - What is the error?
 Being that error depends on x_* .

Solution :

Interval Newton's Method in 1D

Assume

$$a = [\underline{a}, \bar{a}] \in \mathbb{R}$$

$$f: a \rightarrow \mathbb{R} \text{ be } C^1(a)$$

$$f(x_*) = 0 \text{ for some } x_* \in a$$

F' , an inclusion isotonic extension of f' , exists.

$$0 \notin F'(a) \text{ ie } f'(x) \neq 0 \text{ for all } x \in a.$$

Then by the mean value theorem
 for any $x \in a$, $\exists \xi \in a$ such that

$$f(x) = f(x_*) + f'(\xi)(x - x_*)$$

Therefore

$$x_* = x - \frac{f(x)}{f'(\xi)} \in x - \frac{f(x)}{F'(a)}$$

This formula is a key important fact that allows us to define the method as follows.

- ① Let \underline{X}_0 = a the original interval.
- ② Iteratively, $\underline{X}_{\text{new}} = \text{newtonstep}(f, f', \underline{X})$

$$N(\underline{X}_k) = m(\underline{X}_k) - \frac{f(m(\underline{X}_k))}{F'(m(\underline{X}_k))}$$

$$\text{mid}\underline{X} = \text{infoup}(\text{mid}(\underline{X}), \text{mid}(\underline{X}))$$

$$N\underline{X} = \text{mid}\underline{X} - f(\text{mid}\underline{X}) / f'(\text{mid}\underline{X})$$

$$\underline{X}_{k+1} = N(\underline{X}_k) \cap \underline{X}_k$$

$$\underline{X}_{\text{new}} = \text{intersect}(N\underline{X}, \underline{X})$$

Clearly $\underline{X}_{k+1} \subset \underline{X}_k$

Also by the MVT plus interval resolution N ,

$$x_* \in \underline{X}_k \text{ for all } k$$

Theorem (Interval Newton's Method)

Under the assumptions given on a, f, F', \dots
 $\{\underline{X}_k\}_{k=1}^{\infty}$ is a nested sequence of intervals
 converging to x_* .

Proof ① If $m(\underline{X}_k) = x_*$ for some k , then

$$N(\underline{X}_k) = m(\underline{X}_k)$$

② Assume $m(\underline{X}_k) \neq x_*$

Claim $m(\underline{X}_k) \notin N(\underline{X}_k)$

Proof

assume $\xi \in N(\underline{X}_k)$ such that

$$m(\underline{X}_k) = m(\underline{X}_k) - \frac{f(m(\underline{X}_k))}{F'(\xi)}$$

Then $f(m(\underline{X}_k)) = 0 \Leftrightarrow m(\underline{X}_k) = x_*$.

since $F' \neq 0$ only one zero!

Thus $m(\underline{X}_k) \notin N(\underline{X}_k)$ which implies

$$\text{width}(\underline{X}_{k+1}) < \frac{1}{2} \text{width}(\underline{X}_k)$$

Thus we have a nested nonempty sequence of compact sets \Rightarrow convergence

Theorem

Quadratic convergence of
interval Newton's method

Same theorem as the traditional case.

Example Find $\sqrt{5}$ to 8 digits.

Exercise ① Find $\sqrt{2}$ to 8 digits
starting with $X_0 = [1, 2]$.

② For traditional Newton, any guess
will do. What happens if you start
with interval $X_0 = [4, 6]$ in the above?

③ What about $X_0 = [-2, 2]$?

How does this violate hypotheses?

What goes wrong in practice?

How to fix this: Extended interval arithmetic

$$\text{Eg. } \overline{\frac{1}{[-9, 9]}} = (-\infty, -\frac{1}{3}] \cup [\frac{1}{3}, \infty)$$

automatic Differentiation

Rather than finding the derivative by hand, Intlab contains the rules of differentiation and can create an inclusion isotonic extension of a derivative itself using the `gradientinit` command

$$\mathbb{X}_1 = \text{gradientinit}(\mathbb{X}) \quad F\mathbb{X} \cdot x \text{ is } F(\mathbb{X})$$
$$F\mathbb{X} = f(\mathbb{X}_1) \quad F\mathbb{X} \cdot dx \text{ is } F'(\mathbb{X})$$

Exercise ② Rewrite your `newtonstep` code

$$\mathbb{X}_{\text{new}} = \text{newtonstep2}(f, \mathbb{X})$$

to find the derivative automatically.

③ Use this to compute zeros of

$$f(x) = x^3 - 5x - 1$$

Note Multivariate Newton's method is analogous.

pronounced "CROF-CHICK"

Krawczyk's method for root finding in 1D

$\forall x \in \mathbb{X}$, MVT $\Rightarrow \exists \xi \in \mathbb{X}$ st.

$$f(x) = f(x_*) + f'(\xi)(x - x_*)$$

$$f(x) = 0 + f'(\xi)(x - x_*)$$

$$M f(x) = M f'(\xi)(x - x_*)$$

$$x_* - x + M f(x) = x_* - x + M f'(\xi)(x - x_*)$$

$$x_* = x - M f(x) - (1 - M f'(\xi))(x - x_*)$$

\Rightarrow

$$x_* \in x - M f(x) - (1 - M f'(\mathbb{X})) (x - \mathbb{X}) := K(\mathbb{X})$$

Thus we no longer divide by $f'(\mathbb{X})$!

Krawczyk method starting with \mathbb{X}_0 . Iteratively

① Let $M \approx (f'(m(\mathbb{X})))^{-1}$

② Define $m = m(\mathbb{X}_*)$

③ $K(\mathbb{X}_k) = m - M f(m) + (1 - M f'(\mathbb{X}_k))(\mathbb{X}_k - m)$

④ $\mathbb{X}_{k+1} = \mathbb{X}_k \cap K(\mathbb{X}_k)$

Theorem

Krawczyk's method converges

- Ⓐ If \mathbb{X}_k contains a zero, so does \mathbb{X}_{k+1}
- Ⓑ If $\mathbb{X}_0 \cap K(\mathbb{X}_0) = \emptyset$ then f has no zeros in \mathbb{X}_0 .
- Ⓒ If $K(\mathbb{X}_k) \subset \mathbb{X}_k$ then \mathbb{X}_k contains exactly one zero.

Convergence is quadratic if $F'(X)$ is Lipschitz

Krawczyk's method for root finding in n D

Search for solutions to

$$f(x) = 0 \quad \text{where} \quad f: \mathbb{R}^n \rightarrow \mathbb{R}^n$$

Let $F \neq DF$ be the extensions of f, DF on interval \mathbb{X} .

Newton's method is possible but Krawczyk's method is more practical in higher dimensions.

Theorem Krawczyk's method converges (n)

Let $f: \mathbb{R}^n \rightarrow \mathbb{R}^n$ $f \in C^1(\Omega \subset \mathbb{R}^n)$, F , DF extensions,
 $\Omega \subset \mathbb{R}^n$.

assume $M \approx (DF(m(\bar{x})))^{-1}$ nonsingular $\forall x \in \bar{X}$.

Define

$$K(\bar{x}) = x - M f(x) + [I - M DF(\bar{x})](\bar{x} - x)$$

Then a,b,c hold as in 1D case.

For example $K(\bar{x}) \subset \bar{X} \Rightarrow$ unique zero.

Implementation of Krawczyk's method

① Let $m = m(\bar{x}_k)$

② Choose $M_k \approx (DF(m))^{-1}$ Preconditioning matrix

③ $K(\bar{x}_k) = m - M_k f(m) + (I - M_k DF(\bar{x}_k))(\bar{x}_k - m)$

④ $\bar{x}_{k+1} = \bar{x}_k \cap K(\bar{x}_k)$

Implemented in INTLAB as the command

verifynlss (F, interval) (with " ϵ -inflation")

Example Find (x_1, x_2) such that

$$f\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1^2 + x_2^2 - 1 \\ x_1 - x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

On interval $[0.5, 0.8] \times [0.6, 0.9]$.