

Afternoon Exercises
Monday, June 23

- (1) Let's start by thinking about how we can represent complete flags as matrices.
 - (a) Let $n = 3$. Find a matrix that represents each of these flags.
 - (i) $\langle e_1 \rangle \subseteq \langle e_1, e_2 + e_3 \rangle \subseteq \langle e_1, e_2 + e_3, e_1 + e_3 \rangle$
 - (ii) $\langle e_1 + e_2 + e_3 \rangle \subseteq \langle e_1, e_2 + e_3 \rangle \subseteq \langle e_1, e_2, e_3 \rangle$
 - (b) Explain why every complete flag has some matrix that represents it.
 - (c) Let $M, N \in \mathrm{GL}(n)$. Show that M and N represent the same complete flag if and only if there exists some invertible, lower triangular matrix $b \in B_-$ so that $M = bN$.
 - (d) Use the previous two parts to conclude that $\mathrm{FL}(n) = B_- \backslash \mathrm{GL}(n)$.
- (2) Now let's think about Schubert cells.
 - (a) Pick a “random” invertible 3×3 matrix and let F be the flag it represents. Try to have it not be “special” at all. What Schubert cell is F in? Try another random invertible matrix. What Schubert cell do you get?
 - (b) Explain using column operations on matrices how by starting from the permutation matrix for w , you can get to the special representative of any flag in X_w^o by acting by an invertible, upper triangular matrix $b \in B_+$.
 (Recall, the left action is by matrix multiplication on the right!)
 - (c) Use the previous part to conclude that $X_w^o = B_+ \cdot F_w$, where F_w is the permutation flag associated to w .
- (3) Recall, given $w \in S_n$,

$$\ell(w) = \{1 \leq i < j \leq n : w(i) > w(j)\}.$$

The **Rothe diagram** of $w \in S_n$ is the picture you get by plotting dots in an $n \times n$ grid at positions $(i, w(i))$ for all $i \in [n]$, and then striking out the cells to the right and below each dot. Write $D(w)$ for the cells that are not struck out.

 - (a) Explain why $\ell(w) = \#D(w)$.
 - (b) Let $w_0 = n \ n - 1 \ \dots \ 1$ be the longest permutation in S_n . How does $\#D(w)$ relate to $\#D(w_0 w)$?
 Hint: left multiplication by w_0 reverses the columns of the permutation matrix.
 - (c) Use these observations to explain why X_w^o has dimension $\binom{n}{2} - \ell(w)$.
- (4) Recall that the (strong) Bruhat order on S_n is defined by covering relations of the form $w < wt_{i,j}$ with $\ell(w) + 1 = \ell(wt_{i,j})$.
 - (a) If $w < wt_{i,j}$, explain how you can find the permutation flag for $wt_{i,j}$ as the limit of a sequence of flags in X_w^o .
 - (b) Show that if $w \leq v$ in Bruhat order, then $r_w(i, j) \geq r_v(i, j)$ for all $i, j \in [n]$. (The converse holds as well!)
- (5) **Extra!** There's a whole theory of **opposite** Schubert varieties. They are very useful when computing in cohomology. Let $Y_w^0 = B_- \cdot F_w$ be the **opposite** Schubert cell, and $Y_w = \overline{Y_w^0}$ the **opposite** Schubert variety.
 - (a) Describe a way to put matrix representatives for points in Y_w^0 in a “special form” that is similar to what we did for X_w^0 . What are you doing at the level of matrices?
 - (b) Describe what Y_w is in terms of the Bruhat order and opposite Schubert cells.
 - (c) What happens when you take $X_w \cap Y_w$?
 - (d) What does the previous part tell you about $[X_w] \cdot [Y_w] \in H^*(\mathrm{FL}(n))$?
 - (e) Express the class of $[Y_w]$ in terms of Schubert classes. Hint: Think about acting on Y_w by a special element of $\mathrm{GL}(n)$.