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Figure 2.9: The link (two vertices
A.B) and the star (two tfriangles) of
an edge

2.3 Triangulations as simplicial complexes and f-
vectors

As we defined triangulations early on this chapter we
did not consider the role of the faces of the simplices in-
volved in the triangulation. We introduce now an impor-
tant language that is general enough for our construc-
tions and explanations later on:

A simplicial complex K is a finite family of simplices in R
such that

e IfFe Kand G is a face of F, then G € K.

e If FG € Kthen FN G is a face of both F and G.

The elements of a simplicial complex K will be called
cells. The zero dimensional polyhedra belonging to K
will be called the vertices of K and denoted V(K). Note
that the set of all faces of the simplices that form a tri-
angulation constitute a simplicial complex.

It is common to specify a simplicial complex by the list
of its maximal faces as we did for triangulations. In our
discussions sometimes we will need to use this addi-
tional structure of triangulations. For a simplicial com-
plex K we denote by K| the underlying topological space
of the simplicial complex. This is the union of the sim-
plices seen as subsets of some Euclidean space. If K|
is homeomorphic to a ball or sphere we see that K is a
simplicial ball or simplicial sphere respectively.

The boundary 9K of a simplicial complex K is the simpli-
cial complex obtained as the union of all faces contained
in a d — 2-face of K that is contained in exactly one facet
of K. The boundary of a simplicial ball is a simplicial
sphere. The boundary of a simplicial sphere is empty.
We say that a simplicial complex F is a subcomplex of K
if every face of F is a face of K. The boundary of K is a
subcomplex of F.

Let K be a simplicial complex. For any F € K, the star
of F in K, st(F,K), is the subcomplex of K made up of
all simplices of K having F as a face plus all their faces.
The link of F in K is the simplicial complex lk(F,K) =
{C € st(F,K)[FN C = @}. Note that the link of the (k — 1)-
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dimensional face F, Lk(F,K), is a simplicial complex of
dimension d —k — 1.

If F and G are two simplices with distinct vertices in R4
such that the totality of these vertices is at most d+1 and
they are in general position in R, then these vertices
span a simplex called the join of F and G. This will be
denoted by F x G. We note that the join of a p-simplex
with a g-simplex is a (p + q + 1)-simplex.

For an arbitrary simplicial complex there is the notion
of f-vector, which has been central in the development of
the combinatorial theory of polytopes [101]. For a trian-
gulation T of a d-dimensional point configuration, we de-

fine its f-vector to be f(T) = (f_1(T), fo(T), f1(T), f2(T),..., fa(T)),
i.e. the integral vector whose f;(T) = number of i-dimensional

simplices inside T. Of course, in this definition f {(T) =1
for the empty set.

What can be said about the f-vector? How do the entries
grow? We can begin by studying the entry f4(T). We call
the size of a triangulation T the number d-dimensional
simplices (top dimensional simplices) used in the trian-
gulation. How large or small can the size be in terms
of fo(T) (the number of vertices)? We begin with some
results about the size:

Suppose we have a triangulation of an n point set A in
RY. What is the smallest size of a triangulation? Let
t be the number of d-simplices in a triangulation T =
{81,S2,...,S¢} of A. Think of the following graph: Take a

Figure 2.10: The f-vector of the
friangulated regular octahedron is
1:(—l—octaheriron] = (1 ) 6, 13» 12>4)
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Figure 2.11: The dual graph of a
triangulation appear in red

Figure 2.12: A triangulation of the
3-cube with 5 tefrahedra. Its dual
graphis a free

node for each d-simplex and join two of them by an edge
if they share a common d — 1-face. This will be called the
dual graph of a triangulation for obvious reasons.

Not much is known about dual graphs of triangulations
(see exercises) but they are useful to estimate a lower
bound for the size. The dual graph of T has t nodes and
it must be connected because triangulations are con-
nected sets. The set of vertices A is the union of the
set of vertices of the simplices Sy,...,S;. Since the graph
is connected we can index the simplices such that the
dual subgraph associated with a partial list of simplices,
say {$1,S2,...,Sm} with m < t, is connected. If V., is the
set of vertices in the union of U*,S; then V; has cardi-
nality #V; = d + 1 and V; has cardinality n. Moreover
#Vmn < #Vi_1+ 1. Because the new simplex S;, has at
least d vertices in common with V,, 1. In conclusion,

n=#V,<(d+1)+(t—-1)=d+t
and we have the following theorem:

Theorem 2.3.1. The size of a triangulation for ann point
set A in RY is at least n — d. Moreover the equality is
achieved precisely if one of the following equivalent con-
ditions occurs:

e The dual graph of the triangulation is a tree.

e No (d — 2)-face of the triangulation intersects the in-
terior of the convex hull of A.

We simply need to explain the details of the second part.
Clearly when the dual graph of the triangulation is a
tree our labeling of the simplices S; can be such that
#V ., = #V,_1+1 hence the end result becomes an equal-
ity. Conversely, if the dual graph of the triangulation
has a cycle and S, is the last simplex closing the cy-
cle, then all the vertices in V41 lie already in V,,, thus
inequality will be strict in that case.

We want to see now that having a dual graph which is a
tree is equivalent to excluding interior (d —2)-faces (inte-
rior edges in the case of three dimensions for example).
Suppose for a moment the dual graph contains a cycle.
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One can imagine the cycle has as nodes the barycenters
of the face S; N Si41 and that its edges are the line seg-
ments joining successive nodes. If we shrink this cycle
it will remain in the interior. At some point it must in-
tersect one of the boundary faces of S; N Si;1, thus this
face cuts through the interior of conv(A). Conversely,
let F be an interior (d — 2)-face of the triangulation. It
belongs to a d-simplex Sa and let p be a point in the in-
tersection of the relative interior of F with the interior of
conv(A). Consider a circle C with center in p and lying
in the 2-plane perpendicular to the affine hull of F. If
the radius is small enough the circle will be contained
in conv(A) and its relative interior does not intersect any
other (d — 2)-face besides F. Then the d-simplices inter-
sected by the circle form a a cycle.

What is the largest size of a triangulation? We will see
below the answer is an application of the deep upper
bound theorem for spheres proved by Stanley in 1980
[82]: The cyclic d-polytope with n vertices, denoted by
C(n,d), is the convex hull of n vertices taken from the
moment curve (t,t%,t3,... t4). The faces of this polytope
form a simplicial d-sphere.

Theorem 2.3.2 (Upper bound theorem). For any sim-
plicial d-sphere S

fi(S) < fi(Cn+1,d+ 1)), 0<i<d.

where C(n,d) denotes the simplicial complex made of the
boundary faces of the cyclic d-polytope with n vertices.

Lemma 2.3.3. Suppose K is a pure simplicial (d — 1)-
complex and F is a _face of dimension k — 1 inside K. The
Jollowing relations hold:

fJ(K) :fj(K—F) —I—fj,k(lk(F,K)), Jor —1<j<d—1.

Here is the reason this is true: Suppose G is a face of
K of dimension j. if F is contained in G then there is a
j —k-face H in lk(F,K) such that G = FU H. Otherwise, if
G is an element of K—F. In either case the presence of G
was counted on one summand of the formula. Now we
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Figure 2.13: “printing” a
triangulation in the plane on the
surface of the sphere

are ready to present the upper bound on the the size of
triangulations. This result is also known to be tight.

Corollary 2.3.4. The size of a triangulation of a point set
A with n vertices inside R is bounded above by fq(C(n +
1,d+ 1)) —(d+1). In other words The largest size of a tri-
angulation is asymptotically O (n[(d+1/2]) " Similar bounds
hold for i-th entry of the f-vector of a triangulation.

In order to see this we embed the triangulation in ques-
tion inside a simplicial d-sphere. Embed the points of
A inside R by positioning the points in the plane
Xa+1 = €. Let S9 be the unit sphere in R4*! with center
at the origin. Project the set A from the origin onto the
surface of $¢. The simplices of T transfer to be “spherical
simplices”. This is some kind of “reverse stereographic
projection” as shown in Figure 2.13

Finally take the south pole v of the sphere and join it
(over the surface of the sphere) with the boundary (d—1)-
faces of the original triangulation. The resulting com-
plex is a simplicial d-sphere T’. This is a very useful
trick, because it allows us to transfer results about sim-
plicial spheres to results about triangulations of point
sets. For example, f-vector of T’ can be recovered from
the f-vector of T and the f-vector of 0T. More precisely,
we claim that for a d-dimensional triangulation and its
associated d dimensional sphere T’.

f5(T") =(T)+f; —1(dT), —1<j<d.

For this, note the way we constructed the simplicial
complex T, T = T' —v and 1lk(v,T’) = 9T. Thus the
formula we stated follows from Lemma 2.3.3. Finally,
from the upper bound theorem, we have that size of T’
is bounded above by size of T plus the number of bound-
ary (d — 1)-faces of T. That last number is at least d + 1
clearly. Hence the first part of the result follows. The
second part follows from the specific values of f-vectors
of cyclic polytopes.

We conclude this section stating one of the most im-
portant formulas involving the f-numbers, the the Eu-
ler relation. Proofs of this result can be found in many
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sources in algebraic topology. We will use Euler’s for-
mula heavily when we study the space of planar trian-
gulations (in particular how they are connected). More
equations of this kind exist (more about this later!).

Lemma 2.3.5. Suppose K is a d — 1-simplicial complex
associated toa triangulation of a point set in R&~'. Then
Y (1) (K) = (—1)¢

2.4 Flips and the Graph of Triangulations

We are about to introduce local operations that, from
an initial triangulation, produce other “neighboring” tri-
angulations. To define the operations we look at trian-
gulations of the smallest non-trivial sets of points the
circuits. The structure of a triangulation as simplicial
complex plays a role in the formal definition of the oper-
ation too.

We say a subset of points Z C A is a circuit of A if
any proper subset Z’ is affinely independent but Z is
affinely dependent. This notion comes from the theory
of matroids (see [11]). We observe that, up to real scalar
multiple, there is a unique real affine relation among
the elements of Z. We can decompose Z into those el-
ements Z, that appear with positive coefficient in the
unique affine relation, and Z_ = Z\Z,. Geometrically,
the circuits correspond to the minimal Radon partitions
of the configuration. A Radon partition consists of dis-
joint subsets of Z; and Z_ that satisfy relint(conv(Zy))N
relint(conv(Z_)) # 0.

Given a circuit Z C A we define two triangulations k. (Z)
and k (Z) of conv(Z) as follows: k;(Z) as the collection
of simplices {Z — {p}lp € Z+} and k_(Z) ={Z — {p}lp € Z_}.

Lemma 2.4.1. If Z is a circuit, then

1. The collections of simplices k. (Z) ={Z —{p}lp € Z}
andk_(Z) ={Z —{p}lp € Z_} are triangulations.

2. These two are the only triangulations possible.

Proof. We verify the first point: Pick a point a € Z, sub-
divide conv(Z) with a placing st(conv(Z)). We observe

+

T,

Figure 2.14: Two circuits
represented as Radon partitions

ANpES

Figure 2.15: And their associated
friangulations
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Figure 2.16: Examples of geometric
bistellar flips.

that if a belongs to Z, then the placing triangulation
s (conv(Z)) is precisely k(Z). When a belongs to Z_
we obtain k_(Z). A simplex whose vertices belong to Z
must be a simplex of either k;(Z) or k_(Z). On the other
hand any maximal simplex F € k;(Z) intersects improp-
erly with all the maximal simplices of k_(Z). This is the
case because a pair of simplices F € k,(Z) and G € k_(Z)
contains the Radon partition associated with the circuit
Z. In conclusion the only candidates we have for trian-
gulations of Z are precisely k4 (Z) and k_(Z). O

Let T be a triangulation of A and Z C A a circuit. We
say that Z is flippable in T if the following conditions are
satisfied:

1. One of the triangulations k4(Z) or k_(Z) is a sub-
complex of K.

2. Let Fy,F,,...,F: be the maximal dimensional sim-
plices of k;(Z) (similarly k_(Z)), then the link of F;
in K is the same simplicial complex L for all i =
1,...,1.

3 collinear points

_— form acircuit.
(a) & [9 (d \\ -

(b) i E « » / \

(C) -

Now we are ready for a very important definition: Ob-
serve that if a triangulation K is supported on the circuit
Z, then we obtain a new triangulation of A, as follows:
replace all the joins F* G with F € k;(Z) and G € L, with

the joins F/ « G with F/ € k_(Z) and G € L. We denote this
new triangulation by flipz(K).

A\
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This operation of changing the triangulation from K to
flipz(K), or vice versa, is called a flip or geometric bis-
tellar operation. The conditions for doing the flip are
topological (e.g. link condition) and geometric ( circuit
Z is triangulated). This provides us with the required
notion of adjacency for triangulations: The graph of tri-
angulations of a point configuration A is the graph Ga
whose vertices are the distinct triangulations of A. Two
of its vertices are adjacent if the two triangulations are
supported on a common circuit. Equivalently, two trian-
gulations are adjacent if one can be obtained from the
other by a flip.

Figure 2.17: The graph of
triangulations of a 5 point set in the
real line
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Figure 2.18: The Graph of flips for a
hexagon, with one edge missing.
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Figure 3.1: The contracting map.

3.2 How many Triangulations are there?

Given a point set one would like to know how many pla-
nar triangulations are there. This turns out to be a very
difficult question. There is only one family in the plane
for which we can give an exact answer: this is when the
points are vertices of a convex polygon. We present two
proofs of the following count:

nTheorem 3.2.1. The number of triangulations of a con-

vex n-gon is 15 (*"7)), the Catalan numbers. Therefore

n—1
the number of triangulations is of the order O(2?™).

Proof. 1) Assume the vertices of the n-gon are labeled
from 1 to n in clockwise order. Denote by T, all triangu-
lations of an n-gon. Denote by R(n) its cardinality, i.e.
the number of ways to triangulate an n-gon. There is a
nice surjective map f from T, onto T,,. A triangulation
in T,41 is mapped to a triangulation in T,, obtained by
contracting the boundary edge {1,n + 1} (see Figure ??).
First of all, observe that for a triangulation t € T, the
cardinality of f~'(t) equals precisely the number deg; (t)
of arcs touching vertex 1 in t. This is true because each
edge incident to 1, and point 1 itself, can be “doubled”

Nto become the new point n + 1 and the edge {1,n + 1}.
Note also if t1,t, are two triangulations the inverse im-
ages f~1(t7) and f~'(t,) are disjoint. Therefore R(n+ 1) =
Y oq s#{t € Tyldeg,(t) = s}. Dividing by R(n) we obtain
that R(n + 1)/R(n) equals the expected degree of vertex 1
on a random triangulation. This expected value is easy
to compute, since the sum of the degrees at a node at
a triangulation in T,, equals twice the number of edges
in the triangulation, which equals 2(2n —3). The average
degree on a node is then 2(2n—3)/n. This is the expected
degree on node 1.

Now we are left with solving the recursion R(n + 1) =
(2(2n — 3)/n)R(n). It is interesting to note that this is
a different recursion as the one we obtain later in the
second proof. We know that R(3) =1, thus we can easily
proof the stated formula is satisfied by R(n) inductively.
Indeed, if we assume now that R(n) = -5 (**)), from

n—1
the relation we see that
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1 (-4 202n-3)!
Rint1) = (22n=3)/n) <n—2> Tam-m—2im-2)

2(2n—2)! (2n —2)! 1 (2n—2>

n—2mm-_1)m—-2! nm—_Din_-1)! n

This ends the first proof O

2)

Consider an n-gon P with a distinguished edge the base

{1,n}. In a triangulation of P the base is a side of one of 4
the triangles, say {1,k,n}, and this triangular region di-
vides P into two disjoint convex polygonal regions Sywith
k vertices and S, with n — k + 1 vertices for some k =
2,..n —1. See Figure 3.2. The rest of the triangulation
of P is complete with some triangulation of the polygons 2
$1,S2. Now, S; can be triangulated into R(k) ways and S,

n\n—1

into R(n—k+1) ways. Hence for a given choice of vertex k 1 n
containing the edge {1,n}, there are R(k+ 1)R(n—k) ways Figure 3.2: Setting up another
of triangulating P thus we have recursion for R(m.).

R(n) = R(2)R(n—1)+R(3)R(n—2)+R(4)R(n—3)+- - -+R(n—1)R(2)

Now we need to solve this recurrence relation.
We set R(2) = 1 and let a,_1 = R(n). Now we use the
method of formal power series: We have a series F(x) =
Y o2 1 anx™. Now multiplying F by itself we get

F(x) = (a1)>*+(a1a2+a2a1) %>+ - +(a1an_14+a2an_3+ - +an_1a1)x™ " +...

but by our recurrence relation a1 = ajan—1 + azan—3 +
-+ an_1a; so we have FF = F — a;x = F— x so the power
series is the solution of the quadratic equation F>—F+4x =
0. It has two solutions

F(x)=(14++v1—=4x)/2 or (1—+1—4x)/2,

but we know that F(0) = 0 so the right solution is the sec-
ond one. Finally we need to prove that the formula for
R(n) is the right one: Recall Newton’s binomial theorem
we have

k+1

k+2
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(14+2)V2 = i (1]/3)21‘

k=0

where the binomial

172\  0/20/2-1)(1/2=2)...(1/2—=%k+1)] (=) /2k—2
<k>_ k! o k22 (k—])

Applying this to z = —4x we get the desired result (don’t
forget to shift again by 1, because a, = R(n + 1)).
O

Now we wish to estimate the number of triangulations
for an arbitrary point set in the plane.

Theorem 3.2.2. There is a constant ¢ such that every
point set in the plane with n points has at most 2°™ trian-
gulations.

One interesting open problem is to determine the exact
constant ¢ that sets the upper bound. How big can c
be? The first proof that the number of triangulations
of a planar point set is 22 is in [1]. Upper bounds of
173000™, 7187.52™ and 276.75™+00°8(") were given respec-
tively in [?], [?] and [?]. The best upper bound known
for ¢ is that of F. Santos and R. Seidel []. The precise
statement of our upper bound is:

Theorem 3.2.3. The number of triangulations of A is
bounded above by

59v.7b

(v+2+6) ’
where v and b denote the numbers of interior and bound-
ary points of A, respectively, meaning by this points of A
lying in the interior and the boundary of conv(A).

As for lower bounds of the value of the constant ¢, we
have already if all the points in A are vertices of its con-
vex hull then the number of triangulations is the well-

known Catalan number 5 (*")) = @(4™n~3). If A con-

sists of two concave chains of points of the same size
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facing each other then its number of triangulations is
(8"n"7) [32].

Figure 3.3: A point set with many
friangulations (and a partial
triangulation of it. Can this
construction be improved?
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Figure 3.4: The desired
transformation for T;

n
Figure 3.5: The link of n and

flippable inner diagonal

3.4 AllPlanar Triangulations are Connected by Flips

We introduced earlier the flip operation between pairs of
triangulations. It is a natural question to ask whether
any pair of triangulations is connected by a finite se-
quence of flips. For the longest time we did not know
whether this was always the case until Francisco San-
tos constructed a disconnected example in 1999. It was
the end of a long research effort that extended for at
least ten years. We will take a close look at Santos’ con-
struction, in a simpler version, in Chapter 7. Here we
show that in two dimensions the connectivity holds. We
show several proofs of this fact, and then illustrate what
goes wrong with them already in dimension three!

Theorem 3.4.1. Every pair of triangulations of a dimen-
sional point configuration is connected by a sequence of

finitely many flips.

Our first proof proceed via induction on n, the number
of points in the configuration. It is clear that for three or
four points the statement is true. We assume it is true
for triangulations of point sets with n — 1 or less points.
Next suppose we have a point set A with n points and
two of its triangulations T; and T,. We can label the
points of A in such a way that the n-th point is a ver-
tex of the convex hull of A. By induction hypothesis, all
the triangulations of A —{n} are connected by flips. So
our strategy is to slowly transform T; until it becomes
a triangulation T/ of A that is the union of a triangula-
tion of A —{n} and triangles that connect vertex n to its
boundary. This is represented in Figure ??

Note that, by the induction hypothesis T;, T; are indeed
connected by flips, once we have transformed Ty, T; into
the stated shape we will be done. First we can assume
without loss of generality that T; uses all points of A
already, else we can flip in the missing points. Now the
next step is to look at the link of n (see Figure ??).

This is a triangulated (not necessarily convex) polygon
P = link(n,T). From now on we start flipping inside P
each diagonal that starts at n and belongs to a con-
vex quadrilateral. At each step we reduce the area of
P. Since the area is finite we must reach a point when
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we cannot flip anymore. This means T; has been taken
to the desired shape.

Another proof proceeds in a different way! Given a set
of points, A ={ay,...,as} in R?. In a triangulation T of
A, an edge ajq; is locally Delaunay if the edge is in the
convex hull or for the triangles ajajay, ajaja; that con-
tain the edge, the angles at ayx and a; add to at most 180
degrees. This is equivalent to say that the circle passing
through one of the triangles leaves the other point out-
side or on the boundary. If T uses all the points of A as
vertices and every edge of T is locally Delaunay we say it
is a Delaunay triangulation of the point set A.

Because of the above definition it is naturally suggested
that one can compute the Delaunay triangulation by
first computing any triangulation then flipping the edges
that are not locally Delaunay until we have no such bad
edges left. Can one succeed with this process? For pla-
nar triangulations this is indeed possible and it follows
from the next lemma. Already for 3-dimensional config-
urations this process gets stuck in triangulations that
are not even regular.

Lemma 3.4.2. Lift the points A into the paraboloid with
equation z = x*+y?, by mapping a; = (ai;, a;,) to the three
dimensional point (a;1, ais, (ai1)? + (ai2)?), then the projec-
tion of the lower convex hull of the lifted points decom-
poses conv(A) into a union of disjoint convex polygons. A
triangulation of A is Delaunay if and only if it triangulates
each of these polygons.

Proof. : If the points aj, aj, ax lie in counterclockwise or-
der along the circle C(i,j,k) they define, then the point
a; is inside the circle C(i,j, k) if and only if
a; Gz ai’ + a1
2 2
a, a, aj,~+a; 1
det | ’ ’ 5 ! 5 >0
Ak Qg Qg™ + g™ 1
a; g @t +ag’ 1

To see this observe that for any non-vertical plane z =
TX + sy +t its intersection with the paraboloid z = x* + y?
when projected down into the xy plane is a circle (to see
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this complete the squares and you get that it is a circle
with center at (r/2,s/2) and radius (r2/4 + s2/4 + t)1/2).

With respect to the lifting the point q; is inside C(i,j, k) if
and only if its lifted image (ay;, a1z, (ay1)?+(a12)?) is below
the plane defined by the liftings of aj, aj, ax. Finally the
determinant is six times the volume of the tetrahedron
with vertices on the four lifted points and it is positive if
and only if this is the case. O

We have an important corollary.

Corollary 3.4.3. Any triangulation of the set of points
A, that uses all of the points, one can find in a finite se-
quence of edge flips that transforms it into a Delaunay
triangulation. A quadratic number of flips suffice. In par-
ticular the graph of triangulations of a planar point set is
connected.

Proof. In the three dimensional lifting picture we have
presented above we see that an edge flip can be ob-
tained by gluing a tetrahedron underneath two triangles
that share a concave dihedral angle. A sequence of flips
generates a tetrahedrization of the polyhedron that lies
bounded by the initial triangulation T and the final De-
launay triangulation. O

In this connected graph, given two triangulations, how
far apart are they? What is the smallest number of flips
I need to go from one to the other?

Theorem 3.4.4. Any pair of triangulations of a planar
point set are at distance no more than the number of edge
pair crossings.

Here is another curious property of the graph of trian-
gulations of a planar point set.

Theorem 3.4.5. Every triangulation of an n point config-
uration in the plane has at least n — 3 geometric bistellar
Jlips. In other words, the graph of triangulations of a pla-
nar point set with n points has degree at leastn — 3 in all
of its vertices.
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Proof. Let T be a triangulation of an n point configura-
tion A in R?. If there is a flip that inserts a point P,
then T can be considered as a triangulation of A \ {P}
and induction on n shows that it has at least other n—4
flips. Hence we assume that the triangulation uses all
the points of A.

We say that an edge of T is flippable if it is interior (not
contained in the boundary of A) and the two triangles in-
cident to it form either a strictly convex quadrilateral or
a quadrilateral with two consecutive edges whose union
is a straight line segment contained in the boundary of
the convex hull of A. In the first case there is a flip
of type (2,2) which removes the flippable edge and in-
serts the other diagonal of the quadrilateral, and in the
second case there is a flip of type (2,1) which removes
the interior edge and joins the two consecutive collinear
edges into one (corresponding to the upper half of Figure
2.16(a)).

Let e, be the number of boundary edges (note that ey
also equals the number of boundary points of A). Denote
by e; the number of interior edges and by f the number of
triangles. Euler’s formula for the disk gives n—e;—ey+f =
1 and a counting argument shows that 3f = 2e;+e,. With
these two equalities we obtain:

e =3n—3—2¢p

For an interior non-flippable edge a, the union of the two
triangles sharing a is a quadrangle with a concave or flat
vertex which we will call the vertex associated to a. If a
vertex p is associated to four interior edges, then the
four edges form two pairs of collinear edges with p as a
common end and there are two flips of type (2,1) which
make p disappear. If p is associated to three interior
edges, then the star of p looks like either part (a) or (b)
of Figure 2.16, and there is one flip (of type (2,1) or (3,1))
which makes the point p disappear.

Hence, the number of interior non-flippable edges is no
greater than twice the number of interior points plus the
number of flips which make a point disappear. In other
words, the total number e; of interior edges is no greater
than the total number of flips plus twice the number
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n — ey, of interior points. Thus the number of flips is at
least e; —2(n —ey) = n— 3, as desired. O



