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1. Exercise. — Let P : R2 → R : (x1, x2) 7→ x1 be the projection on the horizontal
axis.

(A) Try to prove that if B ⊆ R2 is Borel then so is P (B) (see e.g. H. Lebesgue J.
Math. Pures Appl. 1905 for a famous attempt). Given an arbitrary sequence
〈Aj〉j∈N of subsets of R2, are the sets P (∩j∈NAj) and ∩j∈NP (Aj) equal ?
What about when 〈Aj〉j∈N is nonincreasing ?

(B) Find a Borel set B ⊆ R2 such that P (B) is not Borel (hint : make your
way through A. Kechris Descriptive set theory or the chapter on “analytic
sets” in D. Cohn Measure Theory).

2. Exercise. — This is about the usual integral geometric measure I 1
1 in R2.

(A) Let a, b ∈ R2 and define the line segment [[a, b]] = R2 ∩ {a + t(b− a) : 0 6
t 6 1}. Compute I 1

1 ([[a, b]]).

(B) Compute I 1
1 (U) for any nonempty open set U ⊆ R2.

(C) Open ended : Find about Buffon’s needle and Monte-Carlo methods to
compute π and how they relate to the ideas behind the definition of I 1

1 .

3. Exercise. — This exercise suggests one way of proving Theorem 1.1. Given
A ⊆ Rn define

NA : G(n,m)× Rn → R+ ∪ {∞} : (W, y) 7→ cardA ∩ P−1W {y}

and

χ(B) = G(n,m)× Rn ∩ {(W, y) : y ∈ PW (B)} .
(A) Show that if B is a Borel set then χ(B) is universally measurable (hint :

use some results from descriptive set theory e.g. in D. Cohn ibid.)

(B) If B1 ⊆ B2 then χ(B1) ⊆ χ(B2).

(C) Assume 〈Bj〉j∈N is a sequence of partitions of A such that

(i) Bj+1 is a refinement of Bj ;

ii) limj sup{diamB : B ∈ Bj} = 0.

Establish that the sequence 〈
∑
B∈Bj

1χ(B)〉j∈N is nondecreasing and that

NA = lim
j

∑
B∈Bj

1χ(B) .

(D) Apply the monotone convergence theorem.

4. Exercise. — This is about the integral geometric measure Im
∞ in Rn.

(A) Let a, b ∈ R2. Compute I 1
∞([[a, b]]).

(B) Compute I 1
∞([a, b]× [a, b]), and next I 1

∞(U) where ∅ 6= U ⊆ R2 is open.

(C) Is Im
∞ invariant under isometries ? How does it behave under homotheties ?
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(D) Where does the proof of Theorem 1.1 fail when Im
1 is replaced with Im

∞ ?
Prove the following weaker version : If B ⊆ Rn is Borel then∥∥∥∥∫

•
card(B ∩ P−1• {y})dH m(y)

∥∥∥∥
L∞(G(n,m),γn,m)

6 Im
∞ (B) .

5. Exercise. — This is an informal discussion about the relation between area
and triangulations (or polyhedral approximation). If f : [0, 1]→ Rn is an injective
Lipschitz curve then∫ 1

0

|f ′(t)|dL 1(t) = sup

{
κ∑
k=1

|f(tk)− f(tk−1)| : 0 = t0 < t1 < . . . < tκ = 1

}
(1)

and for each such subdivision 0 = t0 < t1 < . . . < tκ = 1 and each k = 1, . . . , κ one
has

[[f(tk−1), f(tk)]] ⊆ PLk
(f([tk−1, tk])) (2)

where Lk is the (affine) line containing f(tk−1) and f(tk).

(A) Prove both facts if you haven’t seen a proof of these before.

(B) If m > 1 then there is no analog of (1) (hint : google Hermann Schwarz

lantern or draw an accordeon — and think).

(C) The unpleasant phenomenon illustrated by Hermann Schwarz’ example can
be avoided by using regular triangulations. Specifically (say n = 3 and
m = 2), if T ⊆ R2 is a triangle and f : T → R3 is (say injective and)
Lipschitz then

H 2(f(T )) = lim
j

∑
S∈Sj

H 2([[f(v1(S)), f(v2(S)), f(v3(S))]])

for any sequence of triangulations 〈Sj〉j∈N of T such that

(i) There exists θ > 0 such that for every j ∈ N and every triangle S ∈ Sj ,
each angle of S is bounded below by θ ;

(ii) limj sup{diamS : S ∈ Sj} = 0.

In the above formula we have used the following notations : (1) vi(S),
i = 1, 2, 3, denote the vertices of a triangle S ; (2) [[a, b, c]] is the triangle in
R3 with vertices a, b, c ∈ R3, i.e. the convex envelope of {a, b, c}.

(D) What about (2) if m > 1 ? Show by an example that the inclusion need not
hold in general, but always “almost” holds (a proper usage of “almost” in
this sentence would be one that guarantees an appropriate modification of
the proof of Theorem 2.1 works for n = 3, m = 2).

6. Exercise. — This is about the Cantor square S ⊆ R2 introduced in class. All
notations are consistent with those used in class.

(A) Check that if D ⊆ R2 denotes the set of vertices of the squares used in the
construction, then D ⊆ S, D is countable, and PL � (S \D) is injective.

(B) Write S̃ = S \D and u = PL⊥ ◦ (PL � S̃)−1. Check that (PL � S̃)−1 is conti-

nuous (but of course its domain PL(S̃) is a completely disconnected Borel
set ; that u be Borel follows by general descriptive set theory arguments,
but in this instance there is an easier proof of the stronger result that u is
continuous).

(C) Show that for every ε > 0 there exists a continuous curve Γ ⊆ R2 such that
H 1(S \ Γ) < ε (hint : Use the fact that H 1 S is Radon, and Tietze’s
extension theorem).
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(D) Try to visualize such a curve Γ and think about whether you can estimate

the oscillation of u � C where C ⊆ PL(S̃) is any compact set so that u � C
is continuous and H 1(C) > 0.

7. Exercise. — This is about Lipschitz graphs.

(A) Prove the bow-tie lemma and establish how s and Lip f relate.

(B) (Tilt your head) If G ⊆ Rn is a Lipschitz graph over a subset of W ∈
G(n,m) then there exists ε > 0 such that for every W ′ ∈ G(n,m) with
d(W,W ′) < ε, G is a also a Lipschitz graph over a subset of W ′. Here
d(W,W ′) = ‖PW − PW ′‖ (Hilbert-Schmidt norm for instance). How do ε
and Lip f relate ?

(C) Let u : [0, 1] → [0, 1] be the Cantor function (also called the devil’s stair-
case). Since u is nondecreasing, its graph G has finite length, i.e. H 1(G) <
∞ (prove the general fact). Since G is a continuous curve, it is consequently
also a Lipschitz curve (prove the general fact). However u is not Lipschitz
(check it). Is G a Lipschitz graph over some line W ∈ G(2, 1) ?

(D) If u : [0, 1] → R is continuous then its graph is not purely (H 1, 1)-
unrectifiable (hint : T.C. O’Neil, Real Anal. Exch., 2000). Why does this
not contradict Theorem 3.1 about the “parametrization” of a large part of
the Cantor square ?

8. Exercise. — Let S ⊆ R2 be the Cantor square. Show that for every x ∈ S
Θ1
∗(H

1 S, x) < 1 .

(hint : Draw a picture). This provides another proof that S is purely (H 1, 1)-
unrectifiable.


