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Abstract

In 1969 Bombieri, De Giorgi and Giusti proved that Simons cone is a
minimal surface, thus providing the first example of a minimal surface with
a singularity. We suggest a simplified proof of the same result. Our proof is
based on the use of sub-calibrations, which are unit vector fields extending
the normal vector to the surface, and having non-positive divergence. With
respect to calibrations (which are divergence free) sub-calibrations are more
easy to find and anyway are enough to prove the minimality of the surface.

Introduction

The minimality of Simons cone is a very important step in the theory of regularity of
minimal surfaces in higher dimension. In 1960s, Reifenberg, De Giorgi and Federer
and Fleming, found the first regularity results for minimal surfaces in Rn. They
found only a partial regularity result, in the sense that minimal surfaces were proven
to be regular outside a set (the singular set) of small dimension. Subsequent results
of De Giorgi, Fleming, Almgren and Simons gave more precise limitations to the
singular set, finally proving that an (n − 1)-dimensional minimal surface in Rn is
regular outside a singular set whose dimension is at most n− 8.

Simons cone is an example showing that the partial regularity result is optimal:
the cone

S = {x ∈ R8 : x2
1 + x2

2 + x2
3 + x2

4 = x2
5 + x2

6 + x2
7 + x2

8}

is minimal and has a singular point in the origin. In 1969 Bombieri, De Giorgi and
Giusti [2] proved that this surface is indeed minimal, thus completing the regularity
theory for minimal hyper-surfaces. Since the blow up of a minimal surface in every
point is a minimal cone (if the point is non singular, the cone is actually a plane)
we understand that the study of minimal cones is very important in the theory
of minimal surfaces. Actually this is true not only for the minimizer of the area
functional but also for all those geometrical functionals whose principal term is the
area.

After the first proof of the minimality of Simons cone, other simplifications and
generalizations were obtained. In particular we would like to mention Lawson [6],
Simoes [12], Miranda [9] Massari and Miranda [7], Giusti [5], Concus and Miranda
[3], Morgan [11], Benarros and Miranda [1], Davini [4].

In this paper, which originates from the Degree Thesis of the first author, we
present yet another proof of the minimality of Simons cone.

The original proof of Bombieri, De Giorgi and Giusti and the following simpli-
fications (see [4]) use the nice tool of calibrations. A calibration is a divergence
free unit vector field ξ which extends the normal field of the surface to the whole
ambient space. Using the divergence theorem one finds that if such a field can
be found, then the surface is minimal. Using the symmetries of the cone S, the
problem of finding a calibration can be reduced to a 2-dimensional problem, and
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the differential equation div ξ = 0 can be reduced to an ODE. Then a somewhat
deep study of this equation gives the existence of a global solution with the desired
properties.

The proof originally given by Massari and Miranda (see [10] and [8]) uses a dif-
ferent approach. Over the cone S one constructs the cylinder S × R ⊆ Rn+1.
This cylinder can be approximated by the graphs of an increasing sequence of
functions uk : Rn → R which are sub-solutions to the minimal surfaces equation
div[Du/

√
1 + |Du|2] = 0. Hence the cylinder is a sub-minimal surface. Reasoning

in a similar way on the complementary set one finds that the cylinder S × R is
minimal and hence also the cone S is minimal.

We put together ideas from both these two approaches to find a simplified proof.
In fact we consider sub-minimal surfaces i.e. oriented surfaces which are minimal
with respect to the internal deformations (Definition 1.1) and we prove a sub-
calibration result for the sub-minimal surfaces (Definition 1.4, Theorem 1.5). Hence
we explicitly find a sub-calibration for the Simons cone (Section 2) obtaining the
sub-minimality of the cone S. Passing to the complementary set (i.e. changing
the orientation of S) we find that S is also super-minimal and hence it is indeed
minimal (Proposition 1.2).

This method simplifies the original approach with calibrations because we are
able to explicitly find the sub-calibration (we only need to check the inequality
div ξ ≤ 0 instead of proving the existence of a solution to the equation). Also this
is a simplification with respect to the proof involving sub-solutions to the minimal
surface equation because we don’t need to pass to higher dimension, to consider the
functional on the graphs, and then to go back to the original space.

1 Sub-minimal sets and sub-calibrations

In the following we consider, as ambient space, an open set Ω ⊆ Rn. For a measur-
able set E ⊆ Rn we define the perimeter of E in Ω as1

P (E,Ω) = sup
{∫

E

div g dx : g ∈ C1
c (Ω,Rn), |g| ≤ 1

}
.

If E has a regular boundary, P (E,Ω) is equal to the (n − 1)-dimensional surface
area of the boundary ∂E ∩ Ω.

Definition 1.1 (minimal and subminimal sets). We say that a measurable set E
is a local minimum of the perimeter or simply minimal in Ω, if in all bounded open
sets A ⊆ Ω one has2

P (E,A) ≤ P (F,A) for all F such that E 4 F b A.

We say that E is sub-minimal in Ω, if in all bounded open sets A ⊆ Ω one has

P (E,A) ≤ P (F,A) for all F ⊆ E such that E \ F b A.

Proposition 1.2. If both E and Ec = Ω \ E are sub-minimal in Ω, then E is
minimal in Ω.

Proof. Let A be a given bounded open subset of Ω and suppose E4 F b A. Then
consider F ′ = E ∩ F and F ′′ = (E ∪ F )c. Clearly F ′ ⊆ E and F ′′ ⊆ Ec. Moreover

1We denote with C1c (Ω, R) the set of C1 real valued functions with compact support in Ω.
2With E4F we denote the symmetric difference (E \F )∪ (F \E); with F b E we mean that

the closure of F is a compact subset of E.
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E \ F ′ = E \ F ⊆ E 4 F b A and Ec \ F ′′ = Ec \ F c ⊆ E 4 F b A. So, by the
sub-minimality of E we get

P (E,A) ≤ P (F ′, A) = P (E ∩ F,A). (1)

The minimality of Ec instead gives P (Ec, A) ≤ P (F ′′, A) which can be written as

P (E,A) ≤ P ((F ′′)c, A) = P (E ∪ F,A). (2)

From (1) and (2) we get

2P (E,A) ≤ P (E ∩ F,A) + P (E ∪ F,A) (3)

while, as a general property of perimeter, we know that

P (E ∩ F,A) + P (E ∪ F,A) ≤ P (E,A) + P (F,A). (4)

Putting together (3) and (4) we conclude

P (E,A) ≤ P (F,A)

which gives the minimality of E.

Proposition 1.3 (convergence of subminimal sets). Let Ek and E be measurable
sets in Ω with Ek ⊆ E and suppose that3 Ek → E in L1

loc(Ω). If Ek is sub-minimal
in Ω for every k, then also E is sub-minimal in Ω.

Proof. Let A be an open bounded subset of Ω and let F be any measurable set such
that F ⊆ E and E \ F b A. Consider the sets F ′k = F ∩ Ek. Clearly F ′k ⊆ Ek.
Moreover Ek \ F ′k ⊆ E \ F b A. So, by the minimality of Ek we get

P (Ek, A) ≤ P (F ′k, A) = P (Ek ∩ F,A). (5)

Notice also that Ek ⊆ Ek ∪ F ⊆ E, hence Ek ∪ F converges to E in L1. By the
lower-semicontinuity of the perimeter we get

P (E,A) ≤ lim inf
k

P (Ek ∪ F,A).

Applying the inequality (4) we obtain

P (E,A) ≤ lim inf
k

[P (Ek, A) + P (F,A)− P (Ek ∩ F,A)]

and by (5) we conclude
P (E,A) ≤ P (F,A).

Hence E is a sub-minimal set.

Definition 1.4 (subcalibration). Let E ⊆ Ω be a measurable set such that the
boundary ∂E ∩ Ω has C2 regularity. We say that a vector field ξ ∈ C1(Ω,Rn) is a
sub-calibration of E in Ω if it satisfies the following properties:

(i) ξ(x) = νE(x) is the exterior normal vector to ∂E for all x ∈ ∂E ∩ Ω;

(ii) div ξ(x) ≤ 0 for all x ∈ E ∩ Ω;

(iii) |ξ(x)| ≤ 1 for all x ∈ Ω.

3We say that Ek → E in L1
loc(Ω) if for every bounded set A ⊆ Ω we have |(Ek 4 E) ∩A| → 0

where |X| is the Lebesgue measure of the set X.
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Theorem 1.5 (subminimality of subcalibrated sets). If ξ is a sub-calibration of a
set E with boundary of class C2 in Ω then E is sub-minimal in Ω.

Proof. Let A ⊆ Ω be any open, bounded set and let F ⊆ E be a measurable set
with E \ F b A. Choose a sequence of functions ηj ∈ C1c (A,R) such that ηj(x) = 1
for x ∈ E \ F , 0 ≤ ηj(x) ≤ 1 for all x ∈ A and such that the sequence of sets
Aj = {x ∈ A : ηj(x) = 1} is increasing and

⋃
Aj = A.

If we define ξj = ηjξ, we have∫
E∩A

div ξj −
∫

F∩A

div ξj =
∫

E\F
div ξj =

∫
E\F

div ξ ≤ 0

which means that ∫
E∩A

div ξj ≤
∫

F∩A

div ξj . (6)

Since ξj ∈ C1c (A,Rn), we have∫
F∩A

div ξj ≤ sup
{∫

F∩A

divψ : ψ ∈ C1c (A,Rn), |ψ| ≤ 1
}

= P (F,A). (7)

On the other hand4∫
E∩A

div ξj =
∫

∂E∩A

〈ξj , νE〉 dHn−1 =
∫

∂E∩A

ηj〈ξ, νE〉 dHn−1

=
∫

∂E∩A

ηj dHn−1 ≥ Hn−1(∂E ∩Aj)
(8)

where Aj = {x ∈ A : ηj(x) = 1}. Since we have chosen ηj so that Aj ↑ A, passing
to the limit in (8) we obtain

lim inf
j→∞

∫
E∩A

div ξj ≥ Hn−1(∂E ∩A) = P (E,A). (9)

Putting together (6), (7) and (9) we obtain

P (E,A) ≤ P (F,A)

which is the sub-minimality of E.

2 Simons cone

Let n = 2m, and consider the cone

C = {(x, y) ∈ Rm × Rm : |x| ≤ |y|} ⊆ Rn.

This cone is the zero sub-level C = {f ≤ 0} of the function f : Rn → R

f(x, y) =
|x|4 − |y|4

4
, (x, y) ∈ Rm × Rm (10)

hence the following sequences of sets

Ek = {(x, y) ∈ Rm × Rm : f(x, y) ≤ −1
k
},

Fk = {(x, y) ∈ Rm × Rm : f(x, y) ≤ 1
k
}

4The Hausdorff measure Hn−1 on a regular set corresponds to the (n− 1)-dimensional surface
area of the set.
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both converge to C in L1
loc(Rn), with Ek ⊆ C and Fk ⊇ C. More precisely, |A ∩

(C \ Ek)| → 0 and |A ∩ (Fk \ C)| → 0 for every bounded set A. We are going to
prove that all the sets Ek and F c

k = Rn \ Fk are sub-minimal. To achieve this we
will show that the vector field

ξ =
Df

|Df |
(11)

is a sub-calibration.

Proposition 2.1. If m ≥ 4, the vector field ξ defined in (10), (11) is a sub-
calibration of the sets Ek in Ω = Rn\{0} while the vector field −ξ is a sub-calibration
of the sets F c

k in Ω.

Proof. Clearly |ξ| = 1 everywhere in Ω. Also we know that the gradient Df is
orthogonal to the level sets ∂Ek and ∂Fk, and points outwards the sub-level. So
ξ = Df/|Df | is the exterior normal vector to Ek in ∂Ek and −ξ is the exterior
normal vector to F c

k in ∂Fk = ∂F c
k .

We want to compute the divergence of ξ = Df/|Df |. We recall that

f =
1
4

(|x|4 − |y|4),

fxi = |x|2xi, fyi = −|y|2yi, |Df |2 = |x|6 + |y|6,
fxixj

= 2xixj + δij |x|2, fyiyj
= −2yiyj − δij |y|2, fxiyj

= 0.

So(
fxi

|Df |

)
xi

=
(2x2

i + |x|2)(|x|6 + |y|6)−
∑

j |x|2xi|x|2xj(2xixj + δij |x|2)
|Df |3

=
(2 +m)|x|2(|x|6 + |y|6)− 2|x|8 − |x|8

|Df |3

=
(m− 1)|x|8 + (m+ 2)|x|2|y|6

|Df |3
.

The derivatives with respect to yi are the same, with signs changed. So we have

|Df |3 div
Df

|Df |
= (m− 1)|x|8 + (m+ 2)|x|2|y|6 − (m− 1)|y|8 − (m+ 2)|y|2|x|6

= (|x|4 − |y|4)
[
(m− 1)|x|4 − (m+ 2)|x|2|y|2 + (m− 1)|y|4

]
.

We want to prove that the sign of this quantity is the same as the sign of |x|4−|y|4,
so we have only to prove that the expression in square brackets is non-negative.
With the substitution t = |x|2/|y|2 we obtain the relation

(m− 1)t2 − (m+ 2)t+ (m− 1) ≥ 0

which is true for every t if the discriminant ∆ is non-positive, i.e.

∆ = (m+ 2)2 − 4(m− 1)2 = 3m(4−m) ≤ 0

which holds true for m ≥ 4.
So we have proved that div ξ has the same sign of |x|4−|y|4 in particular div ξ ≤ 0

on C ⊇ Ek and div ξ ≥ 0 on Cc ⊇ F c
k . This was the last condition for checking that

ξ is a sub-calibration for every Ek and F c
k in Ω.

Theorem 2.2 (minimality of the cone). The cone C is a minimal set in Rn.
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Proof. Proposition 2.1 ensures that we can apply Theorem 1.5 to obtain that the
sets Ek and F c

k are sub-minimal in Ω = Rn \ {0}. If A is any open subset of Rn

then
P (E,A) = P (E,A \ {(0)}) for every measurable set E

and this is enough to conclude that Ek is sub-minimal in the whole space Rn (notice
also that 0 6∈ ∂Ek). The same reasoning gives the sub-minimality of F c

k in Rn.
So we have a sequence of sub-minimal sets Ek which converge in L1

loc to the cone
C. Hence, by Proposition 1.3 we conclude that C is itself sub-minimal. On the other
hand F c

k are sub-minimal sets converging to Cc. Hence also Cc is sub-minimal. By
Proposition 1.2 we conclude that C is minimal.
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