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1 Introduction

Introduction

In Lecture 1, we defined cluster algebras, based on a special kind of recursion called a cluster pattern. This
recursion is very hard to solve in general (and even in particular!). In fact, it’s so hard, that we have been willing
to settle for “solutions” that merely write down the “vital statistics” of cluster variables (height, weight, Soc. Sec.
#, etc.) so we can at least uniquely identify them. These kinds of solutions are not completely satisfactory, but
they do allow us to prove some important properties of cluster algebras. Equally important (and possibly even more
fun), the vital statistics display fascinating combinatorics, which connects them to other areas of math (e.g. root
systems/reflection groups).

Introduction (continued)

Some of the vital statistics of cluster variables that we will talk about:

• denominator vectors,

• principal coefficients,

• g-vectors, and

• F -polynomials.

In fact, the previous slide maligns two of these statistics: Two of them (g-vectors and F -polynomials) together
actually determine the cluster variable.

Besides vital statistics, we also explore the extent to which the recursion “collapses,” in the sense that the
underlying combinatorial structure is smaller than the n-regular tree.

Recall the example with B =

[
0 2
−1 0

]
and P = {1} on page 4-5 of the notes for Lecture 1. In the example, the

cluster algebra is supposed to “live” on the infinite path Tn. But the real combinatorial backbone is a cycle with 6
vertices (i.e. 6 seeds) and 6 edges (i.e. 6 mutations). This is the exchange graph of the cluster pattern.

Another (dual) way to organize the combinatorics is to view the cluster variables as vertices of a simplicial
complex, whose maximal simplices are the clusters. This is the cluster complex. In the example, there are 6 vertices
(i.e. 6 cluster variables) and 6 maximal simplices (i.e. 6 clusters).

The fact that the exchange graph and the cluster complex are the same is just an artifact of low dimension. In
general, the exchange graph is 1-dimensional, and the cluster complex is (n− 1)-dimensional.

2 The exchange graph and the cluster complex

Review of the basic setup

The initial exchange matrix is a skew-symmetrizable n× n matrix B = (bij) with integer entries. The coefficient
semifield is P = (P,⊕, ·) such that (P, ·) is an abelian group, and ⊕ is an auxiliary addition. (÷ yes, − no.) The
ambient field F is (isomorphic to) the field of rational functions in n variables, with coefficients in the group ring
QP. A labeled seed is a triple (x,y, B), where

• B is an n× n exchange matrix,

• y = (y1, . . . , yn) is a tuple of elements of P called coefficients,

• x = (x1, . . . , xn) is a tuple (or “cluster”) of algebraically independent elements of F called cluster variables.

By repeated seed mutations, we get a labeled seed for each vertex of the n-ary tree Tn.
The cluster algebra A(x,y, B) is the algebra generated by the set of all cluster variables in all seeds.



Unlabeled seeds

Two labeled seeds are equivalent if they can be made identical by simultaneously re-indexing the rows and columns
of B and the entries of the tuples x and y. That is, Σ = (x,y, B) is equivalent to Σ′ = (x′,y′, B′) if there exists a
permutation π of [n] such that

x′
i = xπ(i), y′i = yπ(i), b′ij = bπ(i)π(j)

for all i, j ∈ [n]. An unlabeled seed (or usually just a seed) is an equivalence class of labeled seeds. The point is, we
don’t really care how the matrix is indexed. All we need to know, to do mutation, is the correspondence between
entries in x, entries in y, and rows/columns of B.

The exchange graph

Given the initial (labeled) seed (x,y, B), the exchange graph Ex(x,y, B) is obtained from Tn by identifying
vertices that map to the same (unlabeled) seed. We think of this as a graph whose vertices are seeds, and whose
edges are mutations.

Again, the example with B =

[
0 2
−1 0

]
and P = {1}.

[
0 2
−1 0

]

[x1 x2]

µ1←→

[
0 −2
1 0

]

[
x2+1
x1

x2

]
µ2←→

[
0 2
−1 0

]

[
x2+1
x1

x2
1+(x2+1)2

x2
1x2

]

l µ2 l µ1

[
0 −2
1 0

]

[
x1

x2
1+1
x2

]
µ1←→

[
0 2
−1 0

]

[
x2
1+x2+1
x1x2

x2
1+1
x2

]
µ2←→

[
0 −2
1 0

]

[
x2
1+x2+1
x1x2

x2
1+(x2+1)2

x2
1x2

]

The hexagon example works just as well with only labeled seeds. Here’s an example that shows the need for unlabeled
seeds. Here, the exchange graph is a cycle with 5 vertices.

[
0 1
−1 0

]

[x1 x2]

µ1←→

[
0 −1
1 0

]

[
x2+1
x1

x2

]
µ2←→

[
0 1
−1 0

]

[
x2+1
x1

x1+x2+1
x1x2

]

l µ2

[
0 −1
1 0

]

[
x1

x1+1
x2

]
µ1←→

[
0 1
−1 0

]

[
x1+x2+1

x1x2

x1+1
x2

]
µ2←→

[
0 −1
1 0

]

[
x1+x2+1

x1x2

x2+1
x1

]

←−

identify
these

←−

The cluster algebra A(x,y, B) depends on B. Up to strong isomorphism, A(x,y, B) does not depend on x.
(Given two choices x and x′, there is an algebra isomorphism of F mapping seeds to seeds, and thus inducing a
isomorphism of cluster algebras.) In particular, Ex(x,y, B) depends only on (y, B).

Conjecture 2.1 (Fomin and Zelevinsky, CDM Conj. 14(1)). The exchange graph Ex(x,y, B) depends only on B.

That is, if two labeled seeds are equivalent in the cluster pattern given by (x,y, B), then the corresponding
labeled seeds are equivalent in any cluster pattern (x′,y, B). You verified a case of this in an exercise.

When we form the exchange graph from Tn, we lose the labeling of edges by 1, . . . , n. But we retain the information
of which cluster variable in each seed is exchanged along each edge. This leads to two insights:

• Given a seed in the exchange graph, we can index the cluster, coefficient tuple and exchange matrix in that
seed by the set of edges incident to that seed in the exchange graph.

• The exchange graph is equipped with a connection. This means that every edge µ connecting two vertices Σ
and Σ′ is equipped with a canonical bijection between the n edges incident to Σ and the n edges incident to
Σ′, fixing µ.

Exchange graphs and simplicial complexes

An n-regular graph with connection defines a simplicial complex: For each vertex Σ of the graph, think of the set
of n edges incident to Σ as an abstract (n− 1)-simplex ∆Σ. (Get it straight: Vertices of the simplex are edges of the
graph.) For each edge µ connecting two vertices Σ and Σ′, identify the vertices of ∆Σ and ∆Σ′ (except µ) according
to the connection.
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The cluster complex

Conjecture 2.2. The simplicial complex defined by the exchange graph has vertices specified by the cluster variables.

It is easy to label the vertices of the complex by cluster variables: The conjecture is that every vertex of the
complex is labeled by a distinct cluster variable. When Conjecture 2.2 holds, call this complex the cluster complex.
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Failure of the conjecture might look like this: Suppose a rank-2 cluster algebra has distinct cluster variables a, b,
c, d, and x. Suppose also that the exchange graph is a 6-cycle, and that the clusters in the 6 seeds are

{a, b}, {b, x}, {x, c}, {c, d}, {d, x}, {x, a}.

Conjecture 2.3 (Fomin and Zelevinsky, CDM Conj. 14(3)). For every cluster variable x, the seeds whose clusters
contain x induce a connected subgraph of Ex(x,y, B).

Exercise 2a. Assuming Conjecture 2.3, prove the following: If x is a cluster variable, then any two seeds containing
x are related by a sequence of mutations that fix x. Conclude that Conjecture 2.3 implies Conjecture 2.2.

You will want to use Exercises 1g and 1h.

3 Denominator vectors

Zn-gradings

The ring R[x] of real polynomials in x is a N-graded algebra. First of all, this means that R[x] is an N-graded
vector space

⊕
n∈N

Vn, where each Vn is a vector space. (Take Vn = Rxn.) Also, this means that, if x ∈ Vp and
y ∈ Vq, then xy ∈ Vp+q. The Laurent polynomial ring R[x, x−1] is an Z-graded algebra in the same way.

A Zn-graded algebra is the same thing, except that the graded pieces are indexed by integer vectors, and “p+ q”
is interpreted as vector addition. For example, the Laurent polynomial ring R[x1, x

−1
1 , . . . , xn, x

−1
n ] is Zn-graded with

Vi1···in = Rxi1
1 · · ·x

in
n . We will discuss two important Zn-gradings of a cluster algebra, given by denominator vectors

and g-vectors.

The Laurent phenomenon

Once again, take B =

[
0 2
−1 0

]
and P = {1}.

[
0 2
−1 0

]

[x1 x2]

µ1←→

[
0 −2
1 0

]

[
x2+1
x1

x2

]
µ2←→

[
0 2
−1 0

]

[
x2+1
x1

x2
1+(x2+1)2

x2
1x2

]
µ1←→

[
0 −2
1 0

]

[
v

x2
1+(x2+1)2

x2
1x2

]
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We calculated v =
x2
1+x2+1
x1x2

. This is a Laurent polynomial in x1 and x2. A priori, it need only have been a rational
function.

v =
1 +

x2
1+(x2+1)2

x2
1x2

x2+1
x1

=
x1

x2 + 1
·
x2
1x2 + x2

1 + (x2 + 1)2

x2
1x2

=
x1

x2 + 1
·
(x2 + 1)(x2

1 + x2 + 1)

x2
1x2

The Laurent phenomenon is the assertion that this kind of cancellation always happens.

Theorem 2.4 (Fomin and Zelevinsky, CA I, CA II). Every cluster variable in A(x,y, B) is a Laurent polynomial
in x, whose coefficients are integer polynomials y.

Conjecture 2.5 (Fomin and Zelevinsky, CA I). Every cluster variable in A(x,y, B) is a Laurent polynomial in x,
whose coefficients are polynomials y with nonnegative integer coefficients.

Why is this hard? After all, the coefficients in the exchange relations have nonnegative coefficients.

x′
k =

yk
∏

x
[bik]+
i +

∏
x
[−bik]+
i

(yk ⊕ 1)xk

.

A priori, something like the following could happen: x2+1
x+1 = x− 1.

Denominator vectors

Writing terms in a Laurent polynomial over a common denominator, we get polynomial
monomial . The denominator vector

of a cluster variable is the degree sequence of its denominator. In our favorite example, B =

[
0 2
−1 0

]
and P = {1}:

x1, x2,
x2+1
x1

, x2
1+(x2+1)2

x2
1x2

, x2
1+x2+1
x1x2

, x2
1+1
x2

[−1, 0], [0,−1], [1, 0], [2, 1], [1, 1], [0, 1]

Denominator vectors are a Zn-grading. Indeed, A(x,y, B) is an Zn-graded subalgebra of the Laurent polynomial
ring ZP[x1, x

−1
1 , . . . , xn, x

−1
n ]. Conjecturally, denominator vectors distinguish cluster variables.

Conjecture 2.6. Different cluster variables have different denominator vectors.

If this conjecture is true, then we can model the cluster complex by knowing the list of possible denominator
vectors and knowing which denominator vectors are in the same cluster. In fact, much more than Conjecture 2.6 is
probably true...

Cluster monomials

A cluster monomial is a monomial in the cluster variables in some single cluster (an ordinary monomial, not a
Laurent monomial).

Conjecture 2.7. Different cluster monomials have different denominator vectors.

This would imply that denominator vectors form a fan. More later... For now a picture, for our favorite example.
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4 Principal coefficients

Tropical semifields

There is a particularly nice choice of coefficient semifield. Let u1, . . . , um be formal symbols called tropical
variables. Trop(u1, . . . , um) is the free abelian group generated by u1, . . . , um. Its elements are formal products of
the form

∏m

i=1 u
ai

i with ai ∈ Z and multiplication given by

m∏

i=1

uai

i ·
m∏

i=1

ubi
i =

m∏

i=1

uai+bi
i .

We define an auxiliary addition ⊕ in Trop(u1, . . . , um) by

m∏

i=1

uai

i ⊕
m∏

i=1

ubi
i =

m∏

i=1

u
min(ai,bi)
i .

The triple (Trop(u1, . . . , um),⊕, · ) is a semifield.

Cluster algebras of geometric type

Take P = Trop(u1, . . . , um). Elements of P are Laurent monomials in u1, . . . , um. Thus the group rings ZP and
QP are just the rings of Laurent polynomials in u1, . . . , um. A cluster algebra of geometric type is a cluster algebra
having P = Trop(u1, . . . , um) for its coefficient semifield.

Geometric type simplifies the story considerably: Each yt in the cluster pattern is a collection of Laurent mono-
mials in u1, . . . , um. Recall that mutation for coefficients looks like

y
′

j =





y−1
k if j = k;

yjy
[bkj ]+
k (yk ⊕ 1)−bkj if j 6= k.

But yk is
∏m

i=1 u
ai

i for some integers ai, so we can rewrite:

yk =

∏
u
[ai]+
i∏

u
[−ai]+
i

and (yk ⊕ 1)−1 =
∏

u
[−ai]+
i .

Thus

y
[bkj ]+
k (yk ⊕ 1)−bkj =

{ ∏
u
bkj [ai]+
i if bkj ≥ 0∏

u
−bkj [−ai]+
i if bkj ≤ 0

=
∏

u
sgn(bkj)[aibkj ]+
i

Extended exchange matrices

In geometric type, if yk is
∏m

i=1 u
ai

i , then coefficient mutation replaces yj by yj
∏

u
sgn(bkj)[aibkj ]+
i . This looks

like matrix mutation. A Y-seed (y, B) of geometric type (i.e. P = Trop(u1, . . . , um) can be encoded by an extended

exchange matrix B̃ = (bij)i∈[n+m], j∈[n]. The top square matrix (bij)i,j∈[n] is B. The bottom m × n matrix is given

by yj =

m∏

i=1

u
b(n+i) j

i .

The punchline: If we encode every Y-seed in a Y-pattern of geometric type by an extended exchange matrix,
then mutation of Y-seeds is given by matrix mutation. That is, in direction k:

b′ij =

{
−bij if k ∈ {i, j};

bij + sgn(bkj)[bikbkj ]+ otherwise.

Exchange relations in geometric type
Exchange relations are also much simpler in geometric type: Again, write a coefficient as yk =

∏m

i=1 u
ai

i , and
define xn+i = ui for i = 1, . . . ,m.

1

yk ⊕ 1
=

1
∏

u
−[−ai]+
i

=
∏

u
[−ai]+
i and

yk

yk ⊕ 1
=

∏
u
ai
i∏

u
−[−ai]+
i

=
m∏

i=1

u
[ai]+
i .
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Thus the exchange relation

x′
k =

yk
∏

x
[bjk ]+
j +

∏
x
[−bjk ]+
j

(yk ⊕ 1)xk

becomes x′
k =

∏
u
[ai]+
i

∏
x
[bjk]+
j +

∏
u
[−ai]+
i

∏
x
[−bjk ]+
j

xk

.

Again encoding the Y-seed (y, B) by an extended exchange matrix B̃, we have ai = bik. So the exchange relation
is

x′
k =

∏n+m

i=1 x
[bik]+
i +

∏n+m

i=1 x
[−bik]+
i

xk

.

Principal coefficients

The cluster algebra with principal coefficients associated to an exchange matrix B is the cluster algebra of
geometric type with:

• Coefficient semifield: P = Trop(y1, . . . , yn); and

• Initial coordinate tuple: y = (y1, . . . , yn).

Up to isomorphism, this depends only on B, so we write A•(B). The initial extended exchange matrix is B̃ =

[
B

I

]
.

This is important for at least the following reasons:

• The cluster pattern with principal coefficients has the “largest” exchange graph.

• Cluster variables with principal coefficients determine cluster variables with any other choice of initial coordi-
nates.

We’ll explain in the next few slides. But first, an example.

Example with principal coefficients

Take B =

[
0 2
−1 0

]
and P = Trop(y1, y2), so B̃ =




0 2
−1 0
1 0
0 1


.




0 2
−1 0
1 0
0 1




[x1 x2]

µ1←→




0 −2
1 0
−1 2
0 1




[
y1+x2

x1
x2

]

µ2←→




0 2
−1 0
1 −2
1 −1




[
y1+x2

x1

y2
1y2x

2
1+(y1+x2)

2

x2
1x2

]

l µ2 l µ1




0 −2
1 0
1 0
0 −1




[
x1

y2x
2
1+1

x2

]

µ1←→




0 2
−1 0
−1 0
0 −1




[
y1+y1y2x

2
1+x2

x1x2

y2x
2
1+1

x2

]

µ2←→




0 −2
1 0
−1 0
−1 1




[
y1+y1y2x

2
1+x2

x1x2

y2
1y2x

2
1+(y1+x2)

2

x2
1x2

]

Coverings of exchange graphs

Let A(x,y, B) and A(x′,y′, B) be cluster algebras. Notice: Same B in both. Coefficient semifields may differ.
We say Ex(x′,y′, B) covers Ex(x,y, B) if, for every pair t1, t2 of vertices of Tn,

Σ′
t1
∼ Σ′

t2
=⇒ Σt1 ∼ Σt2 .

Theorem 2.8 (Fomin and Zelevinsky, CA IV). The exchange graph Ex•(B) covers the exchange graph of any other
cluster pattern with initial exchange matrix B.

That is, the cluster pattern with principal coefficients has the “largest” exchange graph among cluster patterns
with initial exchange matrix B. Incidentally, the “smallest” exchange graph for B is obtained from taking P = {1}.
But recall that, conjecturally, these exchange graphs all coincide (Conjecture 2.1).
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Some notation with a bit more detail

Recall that we wrote Σt = (xt,yt, Bt) for the labeled seed associated to a vertex t of Tn. To specify individual
cluster variables, coeficients, and matrix entries, while still keeping track of t, we will write

xt = (xi;t, . . . , xn;t), yt = (y1;t, . . . , yn;t), and Bt = (btij).

We will also write
B̃t = Bt = (btij)

for extended exchange matrices in a cluster pattern of geometric type.

5 F -polynomials and g-vectors

X’s and F ’s

In the principal coefficients case, each xi;t is a rational function in x1, . . . , xn, y1, . . . , yn. We write

Xi;t(x1, . . . , xn, y1, . . . , yn)

for this rational function. We also define Fi;t to be the rational function

Fi;t(y1, . . . , yn) = Xi;t(1, . . . , 1, y1, . . . , yn)

The Laurent Phenomenon (Theorem 2.4) says that Xi;t is a Laurent polynomial in (x1, . . . , xn) whose coefficients
are integer polynomials in (y1, . . . , yn). This implies that Fi;t is an integer polynomial called an F -polynomial.

Theorem 2.9 (Fomin and Zelevinsky, CA IV). Consider a cluster pattern over coefficient semifield P with initial
seed (x,y, B). Then the cluster variables are

xi;t =
Xi;t|F (x1, . . . , xn, y1, . . . , yn)

Fi;t|P(y1, . . . , yn)
.

This formula exhibits a separation of additions phenomenon:

• In the numerator, we evaluateXi;t as a rational function in F (the field of rational functions in x with coefficients
in QP).

• In the denominator, we evaluate Fi;t as a polynomial in P, using the auxiliary addition ⊕.

• Actually, to evaluate Fi;t as a polynomial in P, we need Conjecture 2.5, which says that Xi;t is a Laurent
polynomial in (x1, . . . , xn) whose coefficients are nonnegative integer polynomials in (y1, . . . , yn). This implies
that Fi;t is a polynomial with nonnegative integer coefficients.

• However, with Conjecture 2.5 unproven, the formula for xi;t still makes sense: The function Xi;t is defined by
iterating exchange relations, each of which has positive coefficients. If we never “cancel” common factors from
numerator and denominator, we obtain a subtraction-free expression for Xi;t. This leads to a subtraction-free
(rational!) expression for F , which we can evaluate as a rational function in P.

g-vectors

The Laurent phenomenon implies that Xi;t lives in the ring of Laurent polynomials in x, with coefficients integer
polynomials in y. We define a new Zn-grading of this ring:

deg(xi) = ei , deg(yj) = −bj

where ei is the standard basis vector and bj is the jth column of B.

Proposition 2.10 (Fomin and Zelevinsky, CA IV). Each Xi;t is homogenous with respect to the new grading.

This is easy for t adjacent to t0 in Tn. E.g.:




0 0 3 1
0 0 −1 0
−1 2 0 1
−3 0 −1 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




The degree of Xi;t is the integer vector gi;t, called the g-vector. Together, the g-vector and the F -polynomial
determine the cluster variable (in arbitrary coefficients). The following is a corollary of Theorem 2.9 (separation of
additions) and Proposition 2.10 (homogeneity of cluster variables).
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Corollary 2.11 (Fomin and Zelevinsky, CA IV). Consider a cluster pattern over coefficient semifield P with initial
seed (x,y, B). Then the cluster variables are

xi;t =
Fi;t|F(ŷ1, . . . , ŷn)

Fi;t|P(y1, . . . , yn)
xgi;t .

Each ŷj is the (degree-0 homogeneous) element yj
∏n

i=1 x
bij
i . (These entries are not btij , but rather bij .) The

monomial xgi;t is xg1
1 · · ·x

gn
n , where gi;t = (g1, . . . , gn).

Exercise 2b. Verify the principal coefficients example by hand (+ computer?).

Exercise 2c. In the principal coefficients example, compute g-vectors and F -polynomials. Verify that Theorem 2.9
and Corollary 2.11 recover the general coefficients that you computed in Exercise 1f.

Exercise 2d. Use the (principal coefficients case of the) exchange relations to verify the following relations, which

hold when t
k

—— t′.

Fk;tFk;t′ =

n∏

j=1

y
[btn+j, k]+
j

n∏

i=1

F
[bti, k]+
i;t +

n∏

j=1

y
[−btn+j, k]+
j

n∏

i=1

F
[−bti, k]+
i;t

gk;t′ = −gk;t +

n∑

i=1

[btik]+ gi;t −
n∑

j=1

[btn+j, k]+ bj

How do Fi;t & Fi;t′ relate if i 6= k? Same question for gi;t & gi;t′ .

Some conjectures

Conjecture 2.12. Each F -polynomial has constant term 1.

Conjecture 2.13. Each F -polynomial has a unique monomial of maximal degree. It has coefficient 1 and is divisible
by all the other monomials.

Conjecture 2.14. For each t ∈ Tn, the vectors gi;t : i ∈ [n] are a Z-basis for Zn.

Conjecture 2.15. Different cluster monomials have different g-vectors.

We can interpret this as the statement that g-vectors define a fan.

Conjecture 2.16. In a principal-coefficients cluster pattern, if seeds have equivalent extended exchange matrices,
then the seeds are equivalent.

A collection of integer vectors is called sign coherent if, for each i ∈ [n], the ith components of the vectors all have
weakly the same sign.

Conjecture 2.17. Given a cluster pattern with principal coefficients, for each t ∈ Tn, the rows of the bottom half
of B̃t are sign-coherent.

Conjecture 2.18. For each t ∈ Tn, the g-vectors gi;t : i ∈ [n] are sign-coherent.

Various of these conjectures are equivalent to each other.
Many of them are proved in special cases. Most, for example, are known for skew-symmetric B by results of the

paper (QP2)

Cluster algebras of finite type

A cluster algebra is of finite type if it has only finitely many distinct cluster variables. We have seen two examples.
(The exchange graph was a 5-cycle and a 6-cycle respectively.) The obvious questions are: Which initial data lead
to cluster algebras of finite type? Is the answer dependent on coefficients, or only on B? The next lecture will be
devoted to answering this question by explaining results of (CA II).

As part of the answer, we will describe Fomin and Zelevinsky’s combinatorial model for exchange graphs of finite
type, in terms of root systems. This model and another type of model, in terms of (finite/infinite) reflection groups
and (Kac-Moody) root systems, are the subject of the remaining lectures.
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Combinatorial models for cluster complexes

What could/should we expect from a combinatorial model? Ideally, we want a combinatorial model of the
exchange graph and/or cluster complex, with a combinatorial recipe for explicitly writing down the seeds: exchange
matrices, coefficients, and cluster variables. (Even if we accomplish this, we’re not really necessarily modeling the
cluster algebra by doing this. We’re only modeling the cluster pattern.)

Less ideally, we might settle for a model that got the exchange graph right and explicitly gave us denominator
vectors and/or g-vectors and/or principal coefficients. One might do the same thing replacing “combinatorial” by
“algebraic” or “geometric” throughout. This is an active area of research. In each case, the word “explicitly” is key.
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Exercises, in order of priority

There are more exercises than you can be expected to complete in a day. Please work on them in the order listed.
Exercises on the first line constitute a minimum goal. It would be profitable to work all of the exercises eventually.

2b, 2c, 2d,
2a.

9


