Lecture 2: Exercises

Exercise 2a. Assuming Conjecture 2.3, prove the following: If x is a cluster variable, then any two seeds containing x are related by a sequence of mutations that fix x. Conclude that Conjecture 2.3 implies Conjecture 2.2.

You will want to use Exercises 1g and 1h.

Example with principal coefficients

$$\begin{aligned} \text{Take } B &= \begin{bmatrix} 0 & 2\\ -1 & 0 \end{bmatrix} \text{ and } \mathbb{P} = \text{Trop}(y_1, y_2), \text{ so } \widetilde{B} = \begin{bmatrix} 0 & 2\\ -1 & 0\\ 1 & 0\\ 0 & 1 \end{bmatrix}, \\ & \begin{bmatrix} 0 & 2\\ -1 & 0\\ 1 & 0\\ 0 & 1 \end{bmatrix} & \xleftarrow{\mu_1} & \begin{bmatrix} 0 & -2\\ 1 & 0\\ -1 & 2\\ 0 & 1 \end{bmatrix} & \xleftarrow{\mu_2} & \begin{bmatrix} 0 & 2\\ -1 & 0\\ 1 & -2\\ 1 & -1 \end{bmatrix} \\ & \begin{bmatrix} y_1 + x_2 & y_1^2 y_2 x_1^2 + (y_1 + x_2)^2 \\ x_1 & x_2 \end{bmatrix} & \begin{bmatrix} y_1 + x_2 & x_2 \end{bmatrix} & \begin{bmatrix} y_1 + x_2 & y_1^2 y_2 x_1^2 + (y_1 + x_2)^2 \\ x_1 & x_2 \end{bmatrix} \\ & & \downarrow \mu_2 & & \downarrow \mu_1 \\ & \begin{bmatrix} 0 & -2\\ 1 & 0\\ 1 & 0\\ 0 & -1 \end{bmatrix} & \xleftarrow{\mu_1} & \begin{bmatrix} 0 & 2\\ -1 & 0\\ -1 & 0\\ 0 & -1 \end{bmatrix} & \xleftarrow{\mu_2} & \begin{bmatrix} 0 & -2\\ 1 & 0\\ -1 & 0\\ 0 & -1 \end{bmatrix} \\ & \begin{bmatrix} x_1 & y_2 x_1^2 + x_1 \\ x_2 \end{bmatrix} & \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 y_2 x_1 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 x_2 x_1 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 x_2 x_1 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 x_2 x_1 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 + y_1 x_2 x_1 + x_2 \\ x_1 x_2 \end{bmatrix} & \underbrace{ \begin{bmatrix} y_1 +$$

Exercise 2b. Verify the principal coefficients example by hand (+ computer?).

Exercise 2c. In the principal coefficients example, compute \mathbf{g} -vectors and F-polynomials. Verify that Theorem 2.9 and Corollary 2.11 recover the general coefficients that you computed in Exercise 1f.

Exercise 2d. Use the (principal coefficients case of the) exchange relations to verify the following relations, which hold when $t \stackrel{k}{\longrightarrow} t'$.

$$F_{k;t}F_{k;t'} = \prod_{j=1}^{n} y_j^{[b_{n+j,k}^t]_+} \prod_{i=1}^{n} F_{i;t}^{[b_{i,k}^t]_+} + \prod_{j=1}^{n} y_j^{[-b_{n+j,k}^t]_+} \prod_{i=1}^{n} F_{i;t}^{[-b_{i,k}^t]_+}$$
$$\mathbf{g}_{k;t'} = -\mathbf{g}_{k;t} + \sum_{i=1}^{n} [b_{ik}^t]_+ \mathbf{g}_{i;t} - \sum_{j=1}^{n} [b_{n+j,k}^t]_+ \mathbf{b}_j$$

How do $F_{i;t}$ & $F_{i;t'}$ relate if $i \neq k$? Same question for $\mathbf{g}_{i;t}$ & $\mathbf{g}_{i;t'}$.

Exercises, in order of priority

There are more exercises than you can be expected to complete in a day. Please work on them in the order listed. Exercises on the first line constitute a minimum goal. It would be profitable to work all of the exercises eventually.

2b, 2c, 2d, 2a.