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1 Introduction

Introduction

We have seen, in Lecture 3A, that the combinatorics of finite root systems is intricately related to the combinatorics
of cluster algebras of finite type. This insight led to Fomin and Zelevinsky’s combinatorial model, organized around
denominator vectors. It is not immediately apparent how to extend this almost-positive roots model to cluster
algebras of infinite type.

Instead, we describe a different approach to combinatorial models. This approach uses the combinatorics of the
Coxeter group W in an essential way, along with the geometry of the associated root system and arrangement of
reflecting hyperplanes. Specifically, the combinatorics of reduced words is at play through the sortable elements in
W , and the geometry of the root system enters the picture through the Cambrian fans. In the background, the
lattice theory of the weak order plays a fascinating, but still mysterious role, through the Cambrian (semi)lattice.
Most of the results quoted here are joint with David Speyer.

2 Sortable elements and Cambrian (semi)lattices

Review: From B to A to W

Given a B, we make A:

B =









0 0 −3 3
0 0 1 0
1 −2 0 1

−1 0 −1 0









7→









2 0 −3 −3
0 2 −1 0

−1 −2 2 −1
−1 0 −1 2









= A

Given A, we make a Dynkin diagram.
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From there, a Coxeter diagram.
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From B to an oriented Coxeter diagram

There is still information left in B.

B =









0 0 −3 3
0 0 1 0
1 −2 0 1

−1 0 −1 0











We orient each edge of the diagram
i → j if bij < 0.
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A Coxeter element c of W is an element represented by a word s1s2 · · · sn where S = {s1, . . . , sn} and n = |S|. If
the oriented diagram is acyclic, then we say B is acyclic, and B defines a Coxeter element. (Arrows in diagram point
left in word). In the example, c = s2s3s1s4. Important: If A is of finite type, then B is acyclic. Think: “B = A+c.”

Sorting words

For the rest of the lecture, we will assume B is acyclic and take c to be the Coxeter element defined by B. Fix
some reduced word s1 · · · sn for c. Form an infinite word

c∞ = s1 · · · sn|s1 · · · sn|s1 · · · sn| . . .

The c-sorting word for w is the lexicographically first (i.e. leftmost) subword of c∞ which is a reduced word for w.

Example: W = B4

s s s s
1 2 3 4

4

For c = s1s2s4s3,
c∞ = s1s2s4s3|s1s2s4s3|s1s2s4s3| · · ·

The element w = s4s2s1s2s3s2s1s2s1 has c-sorting word s1s2s4s3|s1s2s3|s1s2.

Sorting words in Sn+1

Multiplying a permutation π on the left by an adjacent transposition si := (i i+1) swaps the entries i and i+1 in
π. Do this repeatedly, always putting entries into numerical order, and record the sequence of si’s. Result: a reduced
word for π. Fix an order on the adjacent transpositions, and write a reduced word for π by trying the adjacent
transpositions in that order, cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example: W = S4, c = s1s2s3, π = 4231. Sorting word is s1s2s3|s2|s1.

Sortable elements of a Coxeter group W

In general, to find the c-sorting word for w ∈ W : Try the generators cyclically according to c. Place a divider
“|” every time a pass through S is completed. A c-sorting word can be interpreted as a sequence of sets (sets of
letters between dividers “ | ”). If the sequence is nested then w is c-sortable.

Example: π = 4231 with c-sorting word s1s2s3|s2|s1 π is not c-sortable because {s1} 6⊆ {s2}.

Example: W = B2, c = s1s2

c-sortable: 1, s1, s1s2, s1s2|s1, s1s2|s1s2, s2
not c-sortable: s2|s1, s2|s1s2

Sortable elements of Sn+1

W = Sn+1, c = snsn−1 · · · s1

The c-sortable elements are the 231-avoiding or stack-sortable permutations.

1 1234 s3s2s1|s2 4213
s3 1243 s3s2|s3 1432
s3s2 1423 s3s1 2143
s3s2s1 4123 s2 1324
s3s2s1|s3 4132 s2s1 3124
s3s2s1|s3s2 4312 s2s1|s2 3214
s3s2s1|s3s2|s3 4321 s1 2134

For c = s1s2 · · · sn, the c-sortable elements are the 312-avoiding permutations. For other Coxeter elements, the
condition is more complicated, blending the two avoidance conditions.
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Results on sortable elements for finite W

1. For finite W , any c, bijection to W -noncrossing partitions: w 7→ cov(w). (SORT)

2. For finite W , any c, bijection to vertices of the generalized associahedron. (SORT)

3. Deep connection to the lattice theory of the weak order on W , via Cambrian lattices. (SC)

4. The Hasse diagram of the c-Cambrian lattice is isomorphic to the exchange graph. (CAMB), (FANS)

(The c-Cambrian lattice is the restriction of the weak order to c-sortable elements. More later.)

Standard parabolic subgroups

Given a subset J ⊆ S, the standard parabolic subgroup WJ is the subgroup of W generated by J . The subgroup
WJ is in particular a Coxeter group with simple generators J . An important case will be when J = S \ {s} for some
s ∈ S. We use the notation 〈s〉 = S \ {s}.

Example: W = B2. The only non-trivial proper standard parabolic subgroups are the two-element groups
generated, respectively, by s1 and by s2.

Example: W = Sn+1. The maximal proper standard parabolic subgroups are as follows:

For each i from 1 to n, the subgroup W〈si〉 is the set of permutations fixing {1, . . . , i} as a set (and therefore
fixing {i+ 1, . . . , n+ 1} as a set).

Initial and final elements

A given Coxeter element cmay have several reduced words. They are all equivalent by transpositions of commuting
elements of S. A generator s ∈ S is initial in c if there is a reduced word for c having s as its first letter. Similiarly,
s is final in c if it is the last letter of some reduced word for c. In either case, the element scs is another Coxeter
element.

Example: W = S4 If c = s1s3s2 = s3s1s2 then s1 and s3 are initial and s2 is final. If c = s1s2s3 then s1 is
initial and s3 is final.

When we encode Coxeter elements as di-
agrams, initial generators are sinks and
final generators are sources.

42 3

1

4
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Recall that the diagram above encodes c = s2s3s1s4.

Passing from c ↔ scs, for s initial or final, is a source-sink move or BGP reflection functor.

A recursive characterization of sortable elements

Lemma 5.1. Let s be initial in c and suppose w 6≥ s. Then w is c-sortable if and only if it is an sc-sortable element
of W〈s〉.

Lemma 5.2. Let s be initial in c and suppose w ≥ s. Then w is c-sortable if and only if sw is scs-sortable.

Both become obvious on inspection of the definition, and staring at:

c∞ = s1 · · · sn|s1 · · · sn|s1 · · · sn| . . .

Since the identity element is c-sortable for any c, the lemmas are a recursive characterization of c-sortability,
by induction on the length ℓ(w) and on the rank of W (the cardinality of S). This form of induction is the most
important proof technique for sortable elements.
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A geometric characterization of sortable elements

The form ωc has a special relation with the reflection sequences of c-sortable elements. Recall that when
a1 · · · ak is a reduced word for some w ∈ W , the reflection sequence associated to a1 · · · ak is t1, . . . , tk, where
ti = a1a2 · · · ai · · · a2a1.

Proposition 5.3 (INF). Let a1 · · · ak be a reduced word for some w ∈ W with reflection sequence t1, . . . , tk. Then
the following are equivalent:

(i) ωc(βti , βtj ) ≥ 0 for all i ≤ j with strict inequality holding unless ti and tj commute.

(ii) w is c-sortable and a1 · · · ak can be converted to a c-sorting word for w by a sequence of transpositions of
adjacent commuting letters.

Proposition 5.3 can be proved by induction on the length k of w and the rank |S| of W , using the following three
facts:

Exercise 5a. If s is initial or final in c, then ωc(β, β
′) = ωscs(sβ, sβ

′) for all roots β and β′.

Exercise 5b. Let s be initial in c and let t be a reflection in W . Then ωc(αs, βt) ≥ 0, with equality only if s and t

commute.

Exercise 5c. Let J ⊆ S and let c′ be the Coxeter element of WJ obtained by deleting all the letters in S \ J from
a reduced word for c. Let VJ be the subspace of V spanned by simple roots corresponding to elements of J . Then ωc

restricted to VJ is ωc′ .

3 The Cambrian framework

Skips

v: a c-sortable element of W a1 · · · ak: its c-sorting word. Recall: c∞ = s1 · · · sn|s1 · · · sn|s1 · · · sn| . . .

For each si ∈ S, there is a leftmost instance of si in c∞ which is not in the subword of c∞ corresponding to
a1 · · · ak. Let a1 · · ·aj be the initial segment of a1 · · ·ak consisting of those letters that occur in c∞ before the omission
of si. Say a1 · · · ak skips si after a1 · · ·aj . If a1 · · · ajsi is a reduced word, then this is an unforced skip. Otherwise it
is a forced skip. Define

Csi
c (v) = a1 · · ·aj · αi.

This is a positive root if and only if the skip is unforced. Write Cc(v) for {C
si
c (v) : si ∈ S}.

Skips example: W = B2, c = s1s2, quad c∞ = s1s2s1s2s1s2s1s2 · · ·

c-sortable: 1, s1, s1s2, s1s2|s1, s1s2|s1s2, s2
not c-sortable: s2|s1, s2|s1s2

α1

α2 2α1 + α2α1 + α2

v si skip Csi
c (v)

1 s1 unforced (s1 reduced) α1

s2 unforced (s2 reduced) α2

s1 s1 forced (s1s1 not reduced) −α1

s2 unforced (s1s2 reduced) 2α1 + α2

s1s2 s1 unforced (s1s2s1 reduced) α1 + α2

s2 forced (s1s2s2 not reduced) −2α1 − α2

s1s2s1 s1 forced (s1s2s1s1 not reduced) −α1 − α2

s2 unforced (s1s2s1s2 reduced) α2

s1s2s1s2 s1 forced (s1s2s1s2s1 not reduced) −α1

s2 forced (s1s2s1s2s2 not reduced) −α2

s2 s1 unforced (s1 reduced) α1

s2 forced (s2s2 not reduced) −α2
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Two facts about skips

Proposition 5.4 (INF). For s initial in c,

Cc(v) =

{

Csc(v) ∪ {αs} if v 6≥ s

sCscs(sv) if v ≥ s

The sets Csc(v) and Cscs(sv) are defined by induction on the rank of W or on the length of v.

Recall: A cover reflection of w ∈ W is an inversion t of w such that tw = ws for some s ∈ S.

Proposition 5.5 (INF). Let v be a c-sortable element. The set of negative roots in Cc(v) is {−βt : t ∈ cov(v)}.

The Cambrian (semi)lattice

The c-Cambrian semilattice Cambc is the subposet of the weak order on W induced by the c-sortable elements.
We will also use the symbol Cambc to denote the undirected Hasse diagram of Cambc.

1

s2
s1

s1s2 s2s1

s1s2s1 s2s1s2

s1s2s1s2

1

s2
s1

s1s2

s1s2s1

s1s2s1s2

When W is finite, this is the c-Cambrian lattice. In the case W = Sn+1 and c = s1 · · · sn, the c-Cambrian lattice
is the weak order restricted to 231-avoiding permutations, AKA the Tamari lattice.

Cambrian lattices in S4

1234

2134 1324 1243

2314 3124 2143 1342 1423

2341 3214 3142 2413 1432 4123

3241 2431 3412 4213 4132

3421 4231 4312

4321

1234

2134 1324 1243

2314 2143 1342

2341 3214 1432

3241 2431

3421

4321

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

1234

2134 1324 1243

2314 2143 1423

3214 2413 1432

2431 4213

4231

4321

The Cambrian framework, finite type

Recall: A (weak) reflection framework is a pair (G,C) such that

• G is a connected n-regular quasi-graph, and

• C is a labeling of each incident pair by a vector C(v, e) in V satisfying

– the Base condition,
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– the Root condition,

– the Reflection condition, and

– the Euler conditions.

The (undirected) Hasse diagram Cambc of the c-Cambrian lattice is an n-regular graph. (That takes some
checking.) We want to say that the pair (Cambc, Cc) is a reflection framework. Base condition: vb is the identity
element. Root condition: by definition. Reflection condition and Euler conditions: Need some difficult results about
sortable elements.

Even with the Base, Root, Reflection and Euler conditions, we still don’t have a framework. The problem: We
have n-labels for each vertex, but we don’t yet know how to assign a label to each incident pair.

Lemma 5.6. If v′ <· v in the c-Cambrian semilattice, then there exists a unique positive root β such that β ∈ Cc(v
′)

and −β ∈ Cc(v).

Lemma 5.6 lets us label each incident pair in Cambc: Suppose v′ <· v in Cambc with v′ = πc
↓(tv) and write e for

the edge v—v′. We label the incident pair the incident pair (v′, e) by the positive root β from Lemma 5.6 and label
(v, e) by −β. We re-use the symbol Cc for this labeling of incident pairs.

Theorem 5.7 (FRM). If A is of finite type, then (Cambc, Cc) is a complete, exact, well-connected polyhedral
reflection framework for B.

Recall what this means:

Complete: n-regular graph (not quasi-graph).

Exact: Implies Cambc ∼= Ex•(B).

Well-connected polyhedral: Cone(v) =
⋂

e∈I(v) {x ∈ V ∗ : 〈x,C∨(v, e)〉 ≥ 0}. Polyhedral means the collection
of all these cones, and their faces, is a fan. Well-connected is a local connectivity condition.

We call this fan the c-Cambrian fan.

The Cambrian framework & fan for our favorite example

B =
[

0 2
−1 0

]

, A =
[

2 −2
−1 2

]

, m(s1, s2) = 4, c = s1s2

Recall: We orient each edge of the diagram i → j if bij < 0. To define c, arrows in diagram point left in the word
for c.

α2α1

−α1

2α1 + α2

−2α1 − α2

α1 + α2

−α1 − α2

α2

−α2

−α2

α1

−α1

1

s1

s1s2

s1s2s1

s1s2s1s2

s2

Cone(1)Cone(s1)

Cone(s1s2)

Cone(s1s2s1)

Cone(s1s2s1s2)

Cone(s2)
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Example: A3, c = s1s2s3

Example: B3, c = s1s2s3

4

The Cambrian framework, infinite type

When A is of infinite type (so W is infinite), Cambc is not n-regular, but no vertex has degree > n. We do,
however, have n labels for each vertex, some attached to edges in Cambc and some not. We augment Cambc to be
an n-regular quasi-graph, by adding the right number of half-edges to each vertex. The new incident pairs get the
remaining labels. We re-use the symbols Cambc and Cc for this quasi-graph and labels.

Theorem 5.8 (FRM). The pair (Cambc, Cc) is an exact, well-connected polyhedral reflection framework for the
exchange matrix B. It is complete if and only if A is of finite type.

Essential reason for incompleteness in the infinite case: Each Cone(v) contains vD, and so intersects the Tits
cone. Typically, there are g-vector cones that don’t intersect the Tits cone.

An infinite Cambrian fan
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Cambrian frameworks of affine Cartan type

A Cartan matrix is of affine type if Tits(A) is a halfspace. Let B be an acyclic exchange matrix defining a Cartan
matrix A of affine type, a Coxeter group W , and a Coxeter element c. Write DF c for the union of the collection of
the faces of the Cambrian fan Fc and the faces of −Fc−1 (the image of the Cambrian fan Fc−1 under negation).

Theorem 5.9 (INF). The collection DFc of cones is a simplicial fan.

We call DFc the doubled Cambrian fan. Theorem 5.9 lets us “glue” Cambc to “−Cambc−1” to get a framework
(DCambc,Cc).

Theorem 5.10 (INF). If B is acyclic and of affine Cartan type, then (DCambc,Cc) is a complete, exact, well-built
reflection framework.

An affine doubled Cambrian fan
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An non-affine doubled Cambrian fan

Consequences for structural conjectures

Corollary 5.11. If B is of finite or affine Cartan type, then Conjectures 2.12–2.17 hold for B.

Most of these are proven in finite type, but this seems to be the first proof of Conjecture 2.16 in finite type. These
all seem to be new in general affine type.

2.12: Each F -polynomial has constant term 1.

2.13: Each F -polynomial has a unique max.-degree monomial.

2.14: For each cluster, the g-vectors are a Z-basis for Zn.

2.15: Different cluster monomials have different g-vectors.

2.16: In the principal-coefficients case, if seeds have equivalent extended exchange matrices, then the seeds are
equivalent. 2.17: The rows of the bottom half of principal-coeff extended exchange matrices are sign-coherent.

Denominator vectors in frameworks
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Let v be c-sortable with c-sorting word a1a2 · · · ak. Given si ∈ S, the last reflection for s in v is a1 · · · aj−1ajaj−1 · · · a1,
where ai is the rightmost occurrence of s in a1a2 · · · ak. Define clsic (v) to be the positive root associated to this
last reflection. That is clsic (v) is a1 · · · aj−1αj . If s doesn’t occur in a1a2 · · ·ak, define clsic (v) = −αi. Define
cl(v) = {clsic (v) : i = 1, . . . , n}.

Example: W = B4, c = s1s2s4s3, quad v = s1s2s4s3|s1s2s3|s1s2

clc(v) = {s1s2s4s3s1s2s3α1, s1s2s4s3s1s2s3s1α2, s1s2s4s3s1s2α3, s1s2α4}.

Theorem 5.12 (SORT). If B is of finite Cartan type, then clc(v) is the set of denominator vectors in Seed(v).

Denominators example: W = B2, c = s1s2

α1

α2 2α1 + α2α1 + α2

v si clsic (v)
1 s1 −α1

s2 −α2

s1 s1 α1

s2 −α2

s1s2 s1 α1

s2 s1α2 = 2α1 + α2

s1s2s1 s1 s1s2α1 = α1 + α2

s2 s1α2 = 2α1 + α2

s1s2s1s2 s1 s1s2α1 = α1 + α2

s2 s1s2s1α2 = α2

s2 s1 −α1

s2 α2

Clus. Var.: x1, x2,
x2+1
x1

,
x2

1
+(x2+1)2

x2

1
x2

,
x2

1
+x2+1
x1x2

,
x2

1
+1
x2

Denom. vec.: [−1, 0], [0,−1], [1, 0], [2, 1], [1, 1], [0, 1]

Exercise 5d. Let s be initial in c, let v be c-sortable and let r ∈ S. Show that

1. If v 6≥ s then

clrc(v) =

{

−αs if r = s, or
clrsc(v) if r 6= s

2. If v ≥ s then clrc(v) = σs(cl
r
scs(sv)).

The sets clrsc(v) and clrscs(sv) are defined by induction on the rank of W or on the length of v.

A conjecture on denominator vectors and g-vectors

Recall that the Euler form E associated to B is

E(α∨
i , αj) =

{

min(bij , 0) if i 6= j, or
1 if i = j.

We define a map ν : V → V ∗ by setting

ν(αj) = −
∑

i∈I

E(α∨
i , αj)ρi.

When B is acyclic, ν is given by the negative of an upper uni-triangular matrix, and therefore it is invertible. The
inverse map, by a standard combinatorial trick, is η : V ∗ → V by

η(ρj) = −
∑

i∈I

F (α∨
i , αj)αj ,

where
F (α∨

i , αj) =
∑

(−E(α∨
i0
, αi1))(−E(α∨

i1
, αi2)) · · · (−E(α∨

ik−1
, αik)).

The sum is over all paths i = i0—i1—· · ·—ik = j in the complete graph with vertices I. Since B is acyclic, this is a
finite sum.
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Conjecture 5.13. If B is acyclic and x is a cluster variable not contained in the initial seed, then g(x) = ν(d(x)).
Equivalently, d(x) = η(g(x)).

As written, the conjecture relates a vector in the weight lattice to a vector in the root lattice. The conjecture
is easily rewritten in terms of the integer vectors. Note that (modulo the condition “not contained in the initial
seed”), this is saying that the g-vectors are νc(clc(v)). νc? To emphasize the dependence on c, and let us think about
source-sink moves c ↔ scs for s initial/final.

The Cambrian framework (or, work by one of you?) lets us prove the conjecture when B is of finite Cartan type.
Recall that g-vectors are the dual basis to Cc. We know that Cc and clc can be characterized by induction on length
and rank. The map νc is compatible with this induction, so we argue by this induction. By the same argument, if
Conjecture 5.13 is true, then cl maps c-sortable elements to denominator vectors outside of finite type, too, in the
(not complete) Cambrian framework.
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Exercises, in order of priority

Although the lecture series is now over, and it’s hard to say when these exercises could be “due,” I’ve still put
them in order of priority for you. The first line still constitutes a minimum immediate goal. It would be profitable
to work all of the exercises eventually.

5a, 5b, 5d,

5c.
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