
Expanded lectures on binomial ideals

Irena Swanson, MSRI 2011, Lectures 2 and 3

In two lectures I covered the gist of the Eisenbud–Sturmfels paper Binomial ideals,

Duke Math. J. 84 (1996), 1–45. The main results are that the associated primes, the

primary components, and the radical of a binomial ideal in a polynomial ring are binomial

if the base ring is algebraically closed.

Throughout, R = k[X1, . . . , Xn], where k is a field and X1, . . . , Xn are variables over k.

A monomial is an element of the form Xa for some a ∈ N
n
0 , and a term is an element of k

times a monomial. The words “monomial” and “term” are often confused. In particular, a

binomial is defined as the difference of two terms, so it should better be called a “biterm”,

but this name is unlikely to stick. An ideal is binomial if it is generated by binomials.

Here are some easy facts:

(1) Every monomial is a binomial, hence every monomial ideal is a binomial ideal.

(2) The sum of two binomial ideals is a binomial ideal.

(3) The intersection of binomial ideals need not be binomial: (t− 1)∩ (t− 2) over a field

of characteristic 0.

(4) Primary components of a binomial ideal need not be binomial: in R[t], the binomial

ideal (t3 − 1) has exactly two primary components: (t − 1) and (t2 + t + 1).

(5) The radical of a binomial ideal need not be binomial: Let k = Z/2Z(t), R = k[X, Y ],

I = (X2 + t, Y 2 + t + 1). Note that I is binomial (as t + 1 is in k), and
√

I =

(X2 + t, X + Y + 1), and this cannot be rewritten as a binomial ideal as there is only

one generator of degree 1 and it is not binomial.

Thus, we do need to make a further assumption, namely, from now on, all fields k

are algebraically closed, and then the counterexamples to primary components and radicals

do not occur. The ring is always R = k[X1, . . . , Xn], and t is always a variable over R.

sectcaf
1 Commutative algebra facts

In this section I list some commutative algebra facts that I will refer to later in

the paper, together with some easy propositions about binomial ideals.

(1) A Gröbner basis of a binomial ideal is binomial.

(2) In fact, an ideal is binomial if and only if it has a binomial Gröbner basis.

(3) For any ideals I , J in R,

I ∩ J = (It + J(t − 1))R[t] ∩ R.

(4) If we take a monomial ordering on R[t] such that the leading term of f is not in R

for all f ∈ R[t] \ R, then for any Gröbner basis G of an ideal K in R[t],

(G ∩ R) = K ∩ R.
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(Recall that G is a finite set, so G ∩ R is just a set intersection.)

(5) If K is a binomial ideal in R[t], then K ∩ R is a binomial in R.

(6) For any ideal I and any element m, (I : m)m = I ∩ (m).

(7) For any Noetherian ring R, ideal I and x ∈ R, the following is a short exact sequence:

0 −→ R

I : x
−→ R

I
−→ R

I + (x)
−→ 0,

where the first map is multiplication by x.

(8) If 0 → M1 → M2 → M3 → 0 is a short exact sequence of finitely generated modules

over a Noetherian ring R, then Ass(M2) ⊆ Ass(M1) ∪ Ass(M3).

(9) If R is a Noetherian ring, then for any ideals I and J in R, the ascending chain

I : J ⊆ I : J2 ⊆ I : J3 ⊆ · · · eventually stabilizes. The stabilized ideal is notated

I : J∞ (without attaching any value to “J∞”).

(10) For any ideal I and any non-nilpotent element x, Ix ∩ R = I : (x)∞.

(11) If I : x∞ = I : xl, then I = (I : xl) ∩ (I + (xl)).

(12) With l as above, Ass(R/(I : xl)) ⊆ Ass(R/I) ⊆ Ass(R/(I : xl)) ∪ Ass(R/(I + (xl))),

and Ass(R/(I : xl)) ∩ Ass(R/(I + (xl))) = ∅.
(13) Let x1, . . . , xn ∈ R. Then for any ideal I in R,

√
I =

√

I + (x1) ∩ · · · ∩
√

I + (xn) ∩
√

I : x1 · · ·xn.

Proposition 1.1
propbiintersbi

If I is a binomial ideal and J is a binomial ideal, then I ∩J is binomial.

Proof. Note that (It + J(t − 1))R[t] is a binomial ideal in R[t]. Let G be its Gröbner

basis under an ordering as in commutative algebra fact (4). Then by commutative algebra

fact (1), G is binomial, hence the set intersection G ∩ R is binomial, so that (G ∩ R) is a

binomial ideal. Thus by commutative algebra fact (3), I ∩ J is binomial.

Proposition 1.2
propbicolonmn

If I is a binomial ideal and m is a monomial, then I : m is binomial.

Proof. By the previous proposition, I ∩ (m) is binomial. By commutative algebra fact (6),

(I : m)m is binomial, whence the division of each generator by its factor m still produces

the binomial ideal I : m.

Proposition 1.3
propinterI+monom

Let I be a binomial ideal, and let J1, . . . , Jl be monomial ideals. Then

there exists a monomial ideal J such that (I + J1) ∩ · · · ∩ (I + Jl) = I + J .

Proof. We can take a k-basis B of R/I to consist of monomials. By Gröbner bases of

binomial ideals, (I + Jk)/I is a subspace whose basis is a subset of B. Thus ∩((I + Jk)/I)

is a subspace whose basis is a subset of B, which proves the proposition.
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sectS
2 Binomial ideals in S = k[X1, . . . , Xn, X−1

1 , . . . , X−1
n ] = k[X1, . . . , Xn]X1···Xn

Any binomial Xa − cXb can be written up to unit in S as Xa−b − c.

Let I be a proper binomial ideal in S. Write I = (Xe − c : some e ∈ Z
n, ce ∈ k∗).

(All ce are non-zero since I is assumed to be proper.)

If e, e′ occur in the definition of I , set e′′ = e − e′, e′′′ = e + e′. Then

Xe − ce = Xe′+e′′ − ce ≡ ce′Xe′′ − ce mod I,

Xe − ce = Xe′′′
−e′ − ce ≡ c−1

e′ Xe′′′ − ce mod I,

so that e′′ is allowed with ce′′ = cec
−1
e′ , and e′′′ is allowed with ce′′′ = cece′ . In par-

ticular, the set of all allowed e forms a Z-submodule of Z
n. Say that it is generated

by m vectors. Records these vectors into an n × m matrix A. We just performed

some column reductions: neither these nor the rest of the standard column reductions

over Z change the ideal I . But we can also perform column reductions! Namely, S ∼=
k[X1X

m
2 , X2, . . . , Xn, (X1X

m
2 )−1, (X2)

−1, . . . , (Xn)−1], and under this isomorphism any

monomial Xa goes to (X1X
m
2 )a1Xa2−ma1

2 Xa3

3 · · ·Xan

n , which corresponds to the second

row of the matrix becoming the old second row minus m times the old first row (and other

rows remain unchanged). So this, and even all other, row reductions are allowed; whereas

they do not change the ideal nor the constant coefficient in the binomial generating set,

they do modify the variables. In any case, we can perform the standard row and column

reductions on the occurring exponents e to get the n × n matrix into a standard form.

Example 2.1
exbinom

Let I = (x3y − y3z, xy − z2) in k[x, y, z]. This yields the 3 × 2 matrix of

occurring exponents:

A =





3 1
−2 1
−1 −2



 .

We first perform some elementary column reductions (that possibly change the ce to prod-

ucts of such, but our ce are all 1, so there is no change):

A →





1 3
1 −2
−2 −1



 →





1 0
1 −5
−2 5



 .

We next perform the row reductions, and for these we will keep track of the names of

variables (in the obvious way):

x
y
z





1 0
1 −5
−2 5



 →
xy
y
z





1 0
0 −5
−2 5



 →
xyz−2

y
z





1 0
0 −5
0 5



 →
xyz−2

y
zy−1





1 0
0 0
0 5



 →
xyz−2

zy−1

y





1 0
0 5
0 0



 .

Thus, up to a monomial change of variables, once we bring the matrix of exponents

into standard form, every proper binomial ideal in S is of the form (Xm1

1 −c1, . . . , X
md

d −cd)

for some d ≤ n, some mi ∈ N, and some ci ∈ K∗.
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Now the following are obvious: in characteristic 0,

I =
⋂

u
mi

i
=ci

(X1 − u1, . . . , Xd − ud),

where all the primary components are distinct, binomial, and prime. Thus here all associ-

ated primes, all primary components, and the radical are all binomial ideals, and moreover

all the associated primes have the same height and are thus all minimal over I .

In positive prime characteristic p, write each mi as pvini for some positive vi and

non-negative ni that is not a multiple of p. Then

I =
⋂

u
mi

i
=ci

((X1 − u1)
pv1

, . . . , (Xd − ud)
pvd

).

The listed generators of each component are primary. These primary components are

binomial, as (Xi − ui)
pvi = X

pvi

i − u
pvi

i . The radicals of these components are all the

associated primes of I , and they are clearly the binomial ideals (X1 −u1, . . . , Xd −ud). All

of these prime ideals have the same height, thus they are all minimal over I . Furthermore,

√
I =

⋂

u
mi

i
=ci

(X1 − u1, . . . , Xd − ud) = (Xn1

1 − un1

1 , . . . , Xnd

d − und

d ),

for any ui with umi

i = ci. The last equality is in fact well-defined as if (u′

i)
mi = ci, then

0 = ci − ci = umi

i − (u′

i)
mi = (uni

i − (u′

i)
ni)pvi

, so that uni

i = (u′

i)
ni . In particular,

√
I is

binomial.

We summarize this section in the following theorem:

Theorem 2.2
thmS

A proper binomial ideal in S has binomial associated primes, binomial

primary components, and binomial radical. All associated primes are minimal. In char-

acteristic 0, all components are prime ideals, so all binomial ideals in S are radical. In

characteristic p, every binomial in the associated primes has a Frobenius power the corre-

sponding primary component.

Example 2.3
exbinom2

(Continuation of Example 2.1.) In particular, if we analyze the ideal from

Example 2.1, the already established row reduction shows that I = (xyz−2−1, (zy−1)5−1).

In characteristic 5, this is a primary ideal with radical I = (xyz−2 − 1, zy−1 − 1) =

(xy − z2, z − y) = (x − z, z − y). In other characteristics, we get five associated primes

(xy − z2, z − αy) = (x − α2y, z − αy) as α varies over the roots of 1. All of these prime

ideals are also the primary components of I .
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sectass
3 Associated primes of binomial ideals are binomial

Theorem 3.1
thmass

Let I be a binomial ideal. Then all associated primes of I are binomial

ideals. (Recall that k is algebraically closed.)

Proof. By factorization in polynomial rings in one variable, the theorem holds if n ≤ 1. So

we may assume that n ≥ 2. The theorem is clearly true if I is a maximal ideal. Now let I

be arbitrary.

Let j ∈ {1, . . . , n}. Note that I + (xj) = Ij + (xj) for some binomial ideal Ij in

k[X1, . . . , Xn−1]. By induction on n, all prime ideals in Ass(k[X1, . . . , Xn−1]/Ij) are bi-

nomial. But Ass(R/(I + (xj))) = {P + (xj) : P ∈ Ass(k[X1, . . . , Xn−1]/Ij)}, so that all

prime ideals in Ass(R/(I + (xj))) are binomial. By Proposition 1.2, I : xj is binomial. If

xj is a zerodivisor modulo I , then I : xj is strictly larger than I , so that by Noetherian

induction, Ass(R/(I : xj)) contains only binomial ideals. By commutative algebra facts

(7) and (8), Ass(R/I) ⊆ Ass(R/(I +(xj)))∪Ass(R/(I : xj)), whence all associated primes

of I are binomial as long as some variable is a zerodivisor modulo I .

Now assume that all variables are non-zerodivisors modulo I . Let P ∈ Ass(R/I).

Since x1 · · ·xn is a non-zerodivisor modulo I , it follows that Px1···xn
∈ Ass((R/I)x1···xn

)

= Ass(S/IS). By Theorem 2.2, Px1···xn
= PS is binomial. For each binomial generator of

PS, clear denominators to get a binomial element of R. Let Q be an ideal in R generated

by these binomials. Then QS = PS, and

P = PS ∩ R = QS ∩ R = Qx1···xn
∩ R = Q : (x1 · · ·xn)

by commutative algebra fact (10). But by Proposition 1.2, Q : (x1 · · ·xn) is a binomial

ideal, whence P is binomial.

Example 3.2 We first demonstrate this on a monomial ideal. Let I = (y3z, z2, x). Note

that I : y3 = I : y∞ = (z, x) is a prime ideal, and that I + (y3) = (y3, z2, x) is primary.

Thus by commutative algebra fact (11),

I = (z, x) ∩ (y3, z2, x)

is a primary decomposition, and it is an irredundant primary decomposition. Thus clearly

Ass(R/I) = {(x, z), (x, y, z)}. To get at the same thing via the methods in the proof of the

theorem in this section, Observe that I : z = (y3, z, x) is primary with the only associated

prime (x, y, z), and that I + (z) = (z, x) is prime.

Comment: we were lucky that the method from the theorem produced exactly the set

of associated primes and not a possibly larger list. In general, there is no such luck, and it

is illustrated in the next example:

Example 3.3
exbinom3

(Continuation of Example 2.1, Example 2.3.) Let I = (x3y − y3z, xy− z2)

in k[x, y, z]. We have already determined all associated prime ideals of I that do not
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contain any variables. So it suffices to find the associated primes of I +(xm), I +(ym) and

of I + (zm), for some large m. But any prime ideal that contains I and x also contains

z, so at least we have that (x, z) is minimal over I and thus associated to I . Similarly,

(y, z) is minimal over I and thus associated to I . Also, any prime ideal that contains I

and z contains in addition either x or y, so that at least we have determined Min(R/I).

Any embedded prime ideal would have to contain of the the already determined primes.

Since I is homogeneous, all associated primes are homogeneous, and in particular, the only

embedded prime could be (x, y, z). It turns out that this prime ideal is not associated

even if it came up in our construction, but we won’t get to this until we have a primary

decomposition.

sectpd
4 Primary decomposition of binomial ideals

The main goal of this section is to prove that every binomial ideal has a binomial

primary decomposition, if the underlying field is algebraically closed. See Theorem 4.4.

We first need a lemma and more terms.

Definition 4.1 An ideal I in a polynomial ring k[X1, . . . , Xn] is cellular if for all i =

1, . . . , n, Xi is either a non-zerodivisor or nilpotent modulo I .

All primary monomial and binomial ideals are primary, as will be clear from construc-

tions below.

Definition 4.2 For any binomial g = Xa−cXb and for any non-negative integer d, define

g[d] = Xda − cdXdb.

The following is a crucial lemma:

Lemma 4.3
lmcrucial

Let I be a binomial ideal, and let g be a binomial in R.

(1) Then for all large d, I : g[d!] = I + (monomial ideal).

(2) If g = Xa − cXb, and if Xa is a non-zerodivisor modulo I , then in addition for all

possibly larger d, I : g[d!] = I : g2[d!] = I + (monomial ideal).

Instead of a complete proof, I outline a sketch as it was in the exercies:

- Prove that for all integers d and e, I : g[d] ⊆ I : g[de].

- Prove that there exists d such that for all e ≥ d, I : g[d!] = I : g[e!].

- With d as in the previous part, let f ∈ I : g[d!]. Write f = c1f1 + c2f2 + · · ·+ csfs for

some monomials f1 > f2 > · · · > fs and some non-zero scalars ci. Prove that for all

j = 1, . . . , s there exists π(j) ∈ {1, . . . , s} such that fjx
d!a − cfπ(j)x

d!b ∈ I . (Perhaps

understanding Gröbner basis reductions helps for this part.)

- Prove that fjg
[d!][s!] ∈ I .

- Prove that fjg
[d!] ∈ I .
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- Prove that I : g[d!] = I + (monomial ideal).

- Let I0 be a monomial ideal such that I : g[d!] = I + I0. Let f ∈ I : g2[d!]. We wish

to prove that f ∈ I : g[d!]. Write f = c1f1 + c2f2 + · · · + csfs for some monomials

f1 > f2 > · · · > fs and some non-zero scalars ci. Without loss of generality assume

that no fi is in I0. Note that fg[d!] ∈ I : g[d!]. Consider the case that fjx
d!a ∈ I0 and

get a contradiction. Now repeat the π argument as in a previous part to make the

conclusion.

Theorem 4.4
thmpd

If k is algebraically closed, then any binomial ideal has a binomial primary

decomposition.

Proof. Let I be a binomial ideal. For each variable Xj by commutative algebra fact (11)

there exists l such that I = (I : X l
j) ∩ (I + (Xj)

l), so it suffices to find the primary

decompositions of the two ideals I : X l
j and I + (Xj)

l. These two ideals are binomial, the

former by Proposition 1.2. By repeating this for another Xi on the two ideals, and then

repeat for Xk on the four new ideals, et cetera, with even some j repeated, we may assume

that each of the intersectands is cellular. It suffices to prove that each cellular binomial

ideal has a binomial primary decomposition.

So let I be cellular and binomial. By possibly reindexing, we may assume that

X1, . . . , Xd are non-zerodivisors modulo I , and Xd+1, . . . , Xn are nilpotent modulo I . Let

P ∈ Ass(R/I). By Theorem 3.1, P is a binomial prime ideal. Since I is contained in P , P

must contain Xd+1, . . . , Xn, and since the other variables are non-zerodivisors modulo I ,

these are the only variables in P . Thus P = P0 + (Xd+1, . . . , Xn), where P0 is a binomial

prime ideal whose generators are binomials in k[X1, . . . , Xd].

So far we have I “cellular with respect to variables”. Now we will make it more “cellular

with respect to binomials in the subring”. Namely, let g be a non-zero binomial in P0. By

Lemma 4.3, there exists d ∈ N such that I : g[d] = I : g2[d] = I + (monomial ideal). This in

particular implies that P is not associated to I : g[d], and by commutative algebra fact (11),

P is associated to I +(g[d]). Furthermore, we can take as the P -primary component of I to

be the P -primary component of binomial ideal I +(g[d]). We replace the old I by this one,

and we keep adding such powers of binomials g that generate P0. Hence we may assume

that P is minimal over I , and it suffices to prove that the minimal components of binomial

ideals are binomial ideals.

Note: we may have lost the genuine cellularity, but we gained that P is minimal over a

binomial ideal I . By possibly repeating the cellular reduction from two paragraphs above,

we may again assume that I is cellular: by commutative algebra fact (12), P is associated to

exactly one of the (possibly) larger binomial ideals as in each step of commutative algebra

fact (11), and in fact it remains minimal over I unde these cellular reductions.

Thus it suffices to prove that if I is binomial, cellular, and if P is a prime ideal

minimal over I , then IRP ∩ R is binomial. This is certainly true if I is a prime ideal. If

Ass(R/I) = {P}, then I is P -primary, and we are done. So we may assume that there

exists an associated prime ideal Q different from P . Then Q = Q0 + (Xd+1, . . . , Xn),
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where Q0 is a binomial prime ideal whose generators are binomials in k[X1, . . . , Xd]. Since

P = P0 +(Xd+1, . . . , Xn) is different from Q and is minimal over I , necessarily there exists

a binomial g ∈ Q ∩ k[X1, . . . , Xd] that is not in P . By Lemma 4.3, there exists d ∈ N

such that I : g[d] = I : g2[d] = I + (monomial ideal). Note that the set of associated

primes of this ideal is strictly contained in Ass(R/I) (as Q is not associated to this ideal),

so in particular I : g[d] is a binomial ideal that is strictly larger than I . If g[d] 6∈ P , then

the P -primary component of I equals the P -primary component of I : g[d], and so by

Noetherian induction (if we have proved it for all larger ideals, we can then prove it for one

of the smaller ideals) we have that the P -primary component of I is binomial. So without

loss of generality g[d] ∈ P . Let g0 be an irreducible factor of g[d] that lies in P . Then

g0 is a binomial, and if the characteristic of R is p, gpm

0 is also a binomial for all m, and

in particular for the largest m such that pm divides d. In either case, h = g[d]/g0 (resp.

h = g[d]/gpm

0 ) is a not necessarily binomial element of R that is not in P , and b = g0 (resp.

b = gpm

0 ) is in I : h), and the P -primary component of I equals the P -primary component

of I + (b) and of I : h. Thus we may replace I by the binomial ideal I + (b). But then

b ∈ Q, whence g0 ∈ Q, and also g ∈ Q, whence each monomial appearing in g is in Q,

contradicting that Q has no variable zerodivisor in k[X1, . . . , Xd].

sectrad
5 The radical of a binomial ideal is binomial

Theorem 5.1
thmrad

If the underlying field is algebraically closed, then the radical of any

binomial ideal in a polynomial ring is binomial.

Proof. This is clear if n = 0. So assume that n > 0. By commutative algebra fact (13),

√
I =

√

I + (X1) ∩ · · · ∩
√

I + (Xn) ∩
√

I : X1 · · ·Xn.

Let I0 =
√

I : X1 · · ·Xn. We have established in Theorem 2.2 that I0S =
√

IS is binomial

in S. Let q be the ideal in R generated by binomials that generate I0S. Then

I0 = I0S ∩ R = qS ∩ R = q : (X1 · · ·Xn)∞

is a binomial ideal as well.

Note that I + (X1) = I ∩ k[X2, . . . , Xn] + (X1) + (monomial ideal). By commutative

algebra fact (5), I1 = I ∩ k[X2, . . . , Xn] is binomial, and so by induction on n, the radical

of I1 is binomial. This radical is contained in
√

I, and by possibly adding these binomial

generators to I , we may assume that
√

I1 ⊆ I , and subsequently that
√

I1 = I1. I leave it

as an exercise that under this condition,
√

I1 + (X1) + (monomial ideal) equals I1 +J1 for

some monomial ideal J1 But this is precisely the radical of I +(X1), and I1 ⊆ I ⊆ I +(X1),

it follows that
√

I + (X1) = I + J1. Similarly,
√

I + (Xj) = I + Jj for some monomial

ideals J1, . . . , Jl. By Proposition 1.3,
√

I = (I + J) ∩ I0 for some monomial ideal J . But

I ⊆ I0, so that
√

I = I + J ∩ I0, and this is a binomial ideal by Proposition 1.1.
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