In this note I complete the argument that I did not complete during the lecture.

Set-up: (R, m) is a Noetherian local ring, M is a finitely generated R-module,
ann M = 0,
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is a complex of finitely generated free R-modules such that Cy @ M is exact, I(p,) is
contained in m, and there exists x € I;(yy) for all k£ that is a non-zerodivisor on M and
on R.

In the lecture I wrote: let Cj = ker(py).

Instead, define C = ker(¢r @ g M). Since C, is a subset of Fj, ® M, which is a direct
sum of copies of M, it follows that = is non-zerodivisor on C}. The exact sequence C¢ @ M
can be spliced up into:
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Since x is a non-zerodivisor on R, we get that tensoring the short exact sequences above
with R/xR yields short exact sequences, which then in turn splice together into the long
exact sequence
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By induction on n, since this complex arises from tensoring a truncation of C,, we conclude
that depth(I (g, M/xM) > k — 1 for all k > 2, so that depth(I(pg, M) > k for all k > 2.

But Lemma 4 also proved that depth(I(¢1, M) > 1, which proves that depth(I(px, M) > k
for all £ > 1. This finishes the proof of (b).



