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Overview

Study of the Dirichlet space is an area where many different viewpoints
and techniques come together. I will discuss many of the themes and
tools. The discussion will generally be informal and sketchy.

The choice of particular topics is influenced by my attempt to build a few
coherent narratives and, of course, by my own interests.

I will give five talks.

1 Introduction to the Dirichlet space
2 Multipliers and Carleson Measures
3 Interpolation and the Pick Property
4 Zero Sets
5 Discrete Models

I will be here for the entire program and would be glad to talk to any of
you about the material any time.
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Talk 1

The Dirichlet Space
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Geometric Definition:

For f (z) = ∑ anzn ∈ Hol (D) set

D (f ) =
1
π

∫ ∫
D

∣∣f ′(z)∣∣2 dxdy = ∞

∑
1
n |an |2

= (area f (D) with multiplicity)2

The Dirichlet space is

D = {f ∈ Hol (D) : D (f ) < ∞}

Using ‖f ‖2 = |a0|2 +D (f ) and the associated inner product, 〈f , g〉 ,
D is a Hilbert space.
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The monomials are orthogonal and the polynomials are dense in D.
The set {1} ∪ {nzn}∞

1 is an orthonormal basis.

The definition of D is, almost, but not quite, strong enough to force
D ⊂ A (D) the algebra of functions in Hol (D) which extend
continuously to the boundary. Functions with ∑∞

1 n log n |an |2 < ∞
are in A (D). The fact that D contains the Riemann map onto any
simply connected domain of finite area shows the general f ∈ D need
not extend continuously to the boundary and it also shows that D
contains unbounded functions. The inclusion A (D) ⊂ D also fails; if
that inclusion held it would be continuous, but the monomials are a
bounded set in A (D) and an unbounded set in D.
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Reproducing Kernels

A Hilbert spaces with reproducing kernels ( = reproducing kernel
Hilbert space = RKHS) is a Hilbert space whose vectors are functions
on a set X and with the evaluation at points of X being continuous.
Those continuous point evaluation functionals are realized by the
reproducing kernels: f → f (x) = 〈f , kx 〉 .
In an RKHS it is possible to define pointwise products of Hilbert
space vectors. This additional structure leads to the distinctive
aspects of the theory of RKHS. Hilbert spaces of holomrophic
functions generally have this additional structure. L2(0, 1) does not.
The general formula for the reproducing kernel is
kz (w) = ∑ en(z)en(w) with {en} any orthonormal basis. For the
Dirichlet space we get kz (w) = 1+ log {1/ (1− z̄w)} .
We have

‖kz‖2 = 〈kz , kz 〉 = kz (z) = 1+ log
1

1− |z |2
.

We denote the normalized kernel by k̂z ; k̂z = kz/ ‖kz‖ .
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Two Other Hilbert Spaces: The Hardy Space

The Hardy space. H2 = H2 (D)

H2 =
{
f ∈ Hol (D) : f = ∑ anzn, ‖f ‖2 = ∑ |an |2 < ∞

}
,

=

{
f ∈ Hol (D) : ‖f ‖2 = lim sup

r↗1

∫ 2π

0

∣∣∣f (re iθ)∣∣∣2 dθ/2π < ∞

}
,

=

{
f ∈ L2 (T) : f ∼

∞

∑
0
ane inθ, ‖f ‖2 =

∞

∑
0
|an |2 < ∞

}
.

The reproducing kernel (Cauchy kernel, Szegö Kernel) is
kz (w) = (1− z̄w)−1 . H2 is a closed subspace of L2 (T, dθ/2π) .
The map

F → 〈F , kz 〉L2(T)
gives the orthogonal projection (Cauchy-Szegö projection) of
L2 (T) onto H2.
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Two Other Hilbert Spaces: The Bergman Space

The Bergman space. A2 = A2 (D)

A2 =

{
f ∈ Hol (D) ∩ L2(D, dxdy

π
), ‖f ‖2 =

∫
D
|f |2 dxdy

π
< ∞

}
=

{
f ∈ Hol (D) , f = ∑ anzn, ‖f ‖2 = ∑

|an |2

n+ 1
< ∞

}
.

For A2 the reproducing kernel (Bergman kernel) is
kz (w) = (1− z̄w)−2 . A2 is a closed subspace of L2 (D, dxdy/π) .
The map

F → 〈F , kz 〉L2(D)
gives the orthogonal projection (Bergman projection) of L2 (D) onto
A2.
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The Dirichlet Space is Different

D is not a subspace of any L2(X , dµ). That leads to a less important
role for measure theory in the study of D and a more important role
for potential theory.

By comparing the formulas for the norms we see

D ⊂ H2 ⊂ A2,
D =

{
f ∈ Hol (D) : f ′ ∈ A2

}
.

One can introduce a notion of half-order differentiation and
integration and produce versions of the last statement which also
involve H2. Potential operators carry functions back and forth
between these three spaces.
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The Dirichlet Space, Alternative Definition

An equivalent norm for D is given by ‖f ‖2 = ∑∞
0 (n+ 1) |an |2 . This

norm does not have a clean geometric interpretation.

On the other hand, the associated kernel function,
−(z̄w)−1 log(1− z̄w), has an important and striking
algebraic/analytic property, the complete Pick property, which we will
discuss later.

Most results can be presented comfortably using either norm, however
the discussion of Carleson’s formula uses the first norm, the discussion
of Pick interpolation the second; hopefully......
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Boundary Value Theory

Because D ⊂ H2 we have access to the Hardy space boundary value
theory:

Any f = ∑ anzn ∈ H2 has radial (in fact, nontangential) boundary
values a.e. The boundary value function is in L2(T) and its Fourier
coeffi cients are the {an} . We will identify the function and its
boundary values whenever convenient and without further comment.

Nontangential approach
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For f ∈ D much more is true. Such f have radial limits off much
smaller exceptional set (capacity zero, of which more later).
Alternatively, if we are willing to accept a much large exceptional set,
a set of measure zero, we can have a much larger approach regions.
For e iθ ∈ T set

NRS
(
e iθ
)
=
{
z ∈ D :

∣∣∣z − e iθ∣∣∣ ≤ |log(1− |z |)|−1}
Theorem: (Nagel, Rudin, Shapiro 1982): Given f ∈ D there is an
exceptional set E ⊂ T, |E | = 0 so that for each e iθ ∈ T \ E

lim
z→e iθ

z∈NRS(e iθ)

f (z) exists.

There are two proofs, both are hard.
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The boundaries of the regions NRS
(
e iθ
)
have infinite order contact

with the circle.

NRS(1) Close-up; y = exp(−1/ |x |)
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Inner-Outer Factorization

Because D ⊂ H2 we also have access to the Hardy space factorization
theory:

If f ∈ H2 then its zero set, Z = {zj}∞
j=1 , satisfies the Blaschke

condition

∑(1− |zi |) < ∞. (B)

The associated Blaschke product is

Bf (z) = BZ (z) =
∞
∏
i=1

z̄i
|zi |

zi − z
1− z̄iz

.

(B) insures that the product converges. Its zero set is exactly Z .
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Set

Of (z) = exp
{
1
2π

∫
T

e it + z
e it − z log

∣∣f (e it)∣∣ dt} . (out)

There is a unimodular constant c and a finite positive Borel measure
µf on T, µf ⊥ dθ, so that, if we set

Sf (z) = exp
{
−
∫

T

e it + z
e it − z dµf (t)

}
,

then we can form a factorization of f :

f = cBf Sf Of .

The functions Bf , Sf , and Of , are called, respectively, the Blaschke,
singular, and outer factors of f . The function If = cBf Sf is called the
inner factor of f and the representation f = If Of is called the
inner-outer factorization of f .
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At almost every boundary point |Bf | = |Sf | = 1, and |f | = |Of | . In
particular each factor is in H2 and ‖Bf ‖H 2 = ‖Sf ‖H 2 = 1,
‖Of ‖H 2 = ‖f ‖H 2 . Thus Of is a zero-free function which carries the
size of f ; Bf carries the zeros, and Sf , which tends to zero strongly
near the support of µf , carries information about how f approaches
zero near the boundary of the disk.

Conversely, if Bf and Sf are as described,
∣∣f (e iθ)∣∣ is specified on the

boundary subject to ∫
T
|f |2 < ∞,

−
∫

T
0∧ log |f | < ∞ (log)

and Of is defined by (out); then f = Bf Sf Of is in H2 and that
product is its canonical factorization.
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A great deal of Hardy space theory is based on this factorization.
There is no truly satisfactory substitute for functions in the Dirichlet
space.

The Hardy space norm of f is the same as that of its outer factor.
Surprisingly, the Dirichlet norm of a function can also be read off
from the data in the factorization. We now present that.
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Carleson’s Formula

Suppose we have f ∈ D, f = cBf Sf Of . For any z ∈ D let Pz (e iθ) be the
Poisson kernel for evaluation at z :

Pz (e iθ) =
1− |z |2

|z − e iθ |2

Set u = log |f | = log |Of | on T. Then (Carleson, 1960)

πD(f ) =
∫
T

(
∑Pzi (e

iθ)
) ∣∣∣f (e iθ)∣∣∣2 dθ (CF)

+
∫
T

∫
T

2

|e iθ − e iφ|2
dµf (e

iφ)
∣∣∣f (e iθ)∣∣∣2 dθ

+
∫
T

∫
T

(e2u(e
iθ) − e2u(e iφ))

(
u(e iθ)− u(e iφ)

)
|e iθ − e iφ|2

dθdφ
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Corollary: The only inner functions in D are the finite Blaschke
products. (Set |f | = 1 and use Fubini’s theorem.)
The formula shows that removing factors from the Blaschke product
or replacing dµf by a smaller measure will reduce the size of D(f ). In
particular if f ∈ D then its outer factor Of ∈ D and D(Of ) ≤ D(f ).
The formula is valuable tool for constructing and studying functions
in the Dirichlet space; we will look at an example later.

A far reaching generalization of this approach, a formula for the
"local Dirichlet integral", has been developed and used very
effectively by Richter and Sundberg .
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Friends of the Dirichlet space I: The Quasinorm

D(f ) is not a norm on D, is is a quasinorm. (Or, if you like, it is a
norm on D0 = D 	C = {f ∈ D : f (0) = 0} .) and some properties
are clearer when working with D0 rather than D.
"The Dirichlet space is conformally invariant" = For Φ is a conformal
automorphism of the disk (a Mobius transformation) define the
renormalized composition operator by f (z)→ f (Φ(z))− f (Φ(0)).
This mapping is unitary on D0. (Recall the geometric interpretation
of D(·).)
Theorem (Arazy-Fisher ’86). If K is a Hilbert space of holomorphic
functions on the disk which has a quasinorm which is invariant under
the full group of Mobius transforms then that quasinorm is a constant
multiple of D.
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Friends of the Dirichlet space II: The Besov Spaces

The Hardy space H2 is an element in a one parameter family of
Banach spaces of holomorphic functions, the Hardy spaces, Hp ,
1 ≤ p ≤ ∞. The Dirichlet space also lives in a natural family of
Banach spaces of holomorphic functions, the Besov spaces.

For 1 < p < ∞ let Bp be the space of holomrophic functions on the
disk for which ∫

D

∣∣(1− |z |2)f ′(z)∣∣p dxdy
(1− |z |2)2 < ∞

For p = 2 this is the Dirichlet space.
The scale can be extended to p = 1 and p = ∞ but the definitions
must be adjusted.
The reason for the particular way of writing the integrand is that both
the differential operator (1− |z |2) ddz and the measure
(1− |z |2)−2dxdy behave well under changes of variables by Mobius
transformations.
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