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Talk 2

Multipliers and Carleson Measures
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Multipliers

A function m is called a multiplier of D if the map Mm defined by
Mm f = mf maps D into itself. If this happens then Mm must be
bounded. We denote the space of all multipliers such by
M(D) =M. For m ∈ M we define the multiplier norm of m,
‖m‖M , to be the operator norm of Mm . With this normM is a
Banach space, in fact a commutative Banach algebra.

It is easy to check that all polynomials are multipliers. The
description of all multipliers is complicated.
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If m ∈ M then for each z ∈ D the function kz is an eigenvector of
M∗m with eigenvalue m(z). To see this we compute.

M∗mkz (w) = 〈M∗mkz , kw 〉
= 〈kz ,Mmkw 〉
= 〈kz ,mkw 〉
= 〈mkw , kz 〉
= m(z)kw (z)

= m(z)kz (w).
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One consequence of this is that multipliers are bounded;M⊂ H∞.,
the space of bounded holomorphic functions on the disk. More
precisely, for m ∈ M we have

‖m‖H∞ = sup
{∣∣∣m(z)∣∣∣} ≤ sup {|γ| : γ an eigenvalue of M∗m}

≤ ‖M∗m‖ = ‖Mm‖ = ‖m‖M .

Another consequence is this: Suppose S =
∨ {kzα} is the closed span

of a set of reproducing kernels; then S in an invariant subspace for
each of the operators M∗m , m ∈ M.
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The Hardy space is a RKHS and the same reasoning shows its
multiplier space is contained in H∞. For the Hardy space that is the
end of the story;M(H2) = H∞. It is now understood that many
results about H2 and H∞ are can be constructively thought of as
results relating a RKHS and it’s multiplier algebra. We will see
examples of this in the next lecture.

For the Dirichlet space boundedness is not the full story. We know
1 ∈ D and henceM⊂ D. On the other hand we saw H∞  D. So,
not every bounded function is a multiplier (although the examples are
not easy to give). We now uncover the rest of the story.
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Conditions on Multipliers

We make the inessential, but technically convenient, restriction to
functions that vanish at the origin.
To show m ∈ M we must, for f ∈ D, bound D (mf ) . We have

D (mf ) =
∫ ∣∣(mf )′∣∣2 . ∫ ∣∣f ′∣∣2 |m|2 + ∫ |f |2 ∣∣m′∣∣2

. ‖m‖2H∞ D(f ) +
∫
|f |2

∣∣m′∣∣2
= I + II .

If I and II are under control we have a multiplier. Conversely, if
m ∈ M then m is bounded and hence I is under control. Once we
know that, a bit of further manipulation will show that II is also
bounded. Thus m is a multiplier if and only if two conditions hold;
first, m is bounded and, second, there is a positive constant C (m) so
that for all f ∈ D∫

|f (z)|2
∣∣m′(z)∣∣2 dxdy ≤ C (m)2 ‖f ‖2 . (MCM)
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Two Extremal Problems

For z ,w ∈ D we consider two extremal problems. First, consider

sup {Re f (z) : f ∈ D, ‖f ‖ ≤ 1, f (w) = 0} .
Elementary Hilbert space theory insures that there is a unique function
for which the supremum is attained; we will denote that function by
kw ,z . Second, we consider the analogous quantity for multipliers;

M = sup {Rem(z) : m ∈ M, ‖m‖M ≤ 1, m(w) = 0} .
If there is a unique function for which that supremum is attained we
will denote it by mw ,z .
It will be convenient to formulate the results using the distance
function δ (z ,w) given by

δ (z ,w) =
(
1−

∣∣〈k̂z , k̂w 〉∣∣2)1/2

(The triangle inequality can be obtained starting from the fact that∣∣〈k̂z , k̂w 〉∣∣2 = cos2(angle between kz and kw .))
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Results

Proposition 1:

1) Given z ,w ∈ D the unique solution to the Hilbert space extremal
problem is

kw ,z = δ(z ,w)−1
(
k̂z −

〈
k̂z , k̂w

〉
k̂w
)
.

It produces the extremal value kw ,z (z) = ‖kz‖ δ (z ,w) .

2) M ≤ δ (z ,w) . If there is an m ∈ M, ‖m‖M ≤ 1, m(w) = 0 and
m(z) = δ (z ,w) then

M = δ (z ,w) and mw ,z = m

and the solutions to the two problems are related by

mw ,z k̂z = kw . (Relation)
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Proof: 1) First we consider the Hilbert space problem. Note that
projecting a purported extremal onto span {kz , kw } would produce an
improved competitor. Thus the solution must be in this two
dimensional space. In that space the supremum will be attained at a
unit vector orthogonal to kw . A Gram-Schmidt computation finishes
the argument.

2) Now we consider the multipliers. If t ∈ M, ‖t‖M ≤ 1, t(w) = 0
then tk̂z is a competitor for the Hilbert space extremal problem we
just solved; that insures M ≤ δ (z ,w) . If there is an m as described
in the statement then mk̂z would attain the supremum for that
extremal problem and hence, by the uniqueness of kw ,z we would have
mk̂z = kw ,z . That establishes that if there is such an m it is unique
and (Relation) holds.
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Carleson Measures

A positive measure µ supported on D is called a Carleson measure
(for D) if ∃C (µ) > 0 so that ∀f ∈ D,∫

D
|f |2 dµ ≤ C (µ)2 ‖f ‖2 .

The Carleson measure norm of µ, ‖µ‖cm, is defined to be the
infimum of possible choices for C (µ) in this inequality. Equivalently,
µ is a Carleson measure if the natural inclusion, Jµ, of A(D) into
L2(dµ) extends to a bounded map of D to L2(dµ) with norm
‖µ‖cm . We denote the set of all such measures by CM(D). In this
language our second requirement for multipliers, (MCM), is that,
|m|2 dxdy ∈ CM(D).
These measures play an important, but quite technical, role in the
study of the Dirichlet space and it is important to understand them.
We will offer two characterizations of them but will not discuss the
proofs in these talks.

Rochberg () The Dirichlet Space June 16, 2011 11 / 18



Stegenga’s Characterization

In 1980 Stegenga gave a characterization of measures in CM(D) that
used a capacity function to measure the size or sets in T. For Y ⊂ T set

cap(Y ) = inf
{
‖f ‖2 : f ∈ D, Re f ≥ 1 on Y

}
.

Every countable set has capacity zero; every set of capacity zero has
Lebesgue measure zero. The Cantor middle-thirds set has positive
capacity and Lebesgue measure zero.

This is a "Bessel capacity". There is a closely related notion of
"logarithmic capacity". The two capacities have the same null sets
but there is no simple general comparison of their values. The two are
sometimes confounded in the literature. Another quantity, with a
similar name, "analytic capacity", is quite different.
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Given Y ⊂ T, a union of intervals, we define T (Y ) the "union of
tents over Y " by pictures:

Y

T (Y )
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Theorem : µ is a Carleson measure for D if and only if there is a
constant C (µ) so that given any Y ⊂ T, a union of intervals, we have

µ(T (Y )) ≤ C (µ) cap(Y ). (ST)

The same condition, but considered only for the special cases of Y a
single interval, is necessary but not suffi cient. That condition is
sometimes called a "single box" condition. (In some presentations of
these ideas our triangles are replaced by boxes.)

Proof comment: Starting with the definition of capacity is is
straightforward to find functions that can be used to show that the
condition is necessary. To establish suffi ciency requires technical tools
("capacitary strong type inequalities").
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A Testing Condition Characterization

For z ∈ D we define the shadow under z , S(z), by a picture. It is the
same as the tent over associated interval

S(z) = T (I )

Theorem: (Arcozzi, R, Sawyer, ’02): µ is a Carleson measure for D if
and only if there is a constant C (µ) so that ∀ζ ∈ D∫

S (ζ)
µ(S(z))2

dA(z)

(1− |z |2)
≤ C (µ)µ(S(ζ)). (TC)
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A natural approach for trying to characterize the boundedness of the
inclusion Jµ is to study the condition obtained by assuming Jµ is
uniformly bounded when applied to the reproducing kernels. This
type of testing gives a necessary condition. For some questions on a
RKHS the necessary condition obtained this way is also suffi cient (a
"success of the Reproducing Kernel Thesis"). That doesn’t happen
here. In fact the necessary condition obtained is equivalent to the
"one box" condition.
One can extend this approach by studying the estimates obtained by
testing the boundedness of J∗µ on a set of fundamental functions in
L2(dµ). The uniform boundedness of J∗µ on characteristic functions of
the sets S(ζ) yields (TC) and hence that condition must be
necessarily. The condition is also suffi cient. That is best understood
by first looking at an analogous question in a discrete model. That
will be discussed in later talks.
A consequence of these two results is an indirect proof that the
conditions (ST) and (TC) are equivalent. This equivalence will also
be discussed later.
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The Simple Case

If µ is supported on [.5, 1] then the one box condition is necessary
and suffi cient. Furthermore is is possible to estimate the relevant
capacities.

µ is supported on [.5, 1] is a Carleson measure if and only if for
.5 < x < 1, µ ([x , 1]) ≤ C

∣∣(log(1− x))−1∣∣ . For instance
dµ(x) =

χ(.5,1)(x)

(1− x) (log (1− x))2
dx

is a Carleson measure.
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If X = {xn} ⊂ (0, 1) then µX = ∑∞
i=1 ‖kxn‖

−2 δxn will be a Carleson
measure (a question of interest in the next lecture) if and only if

∑
xn>x

log
1

1− x2n
≤ C log 1

1− x2 .

In particular:

For xn = 1− 2−n, µX is not a Carleson measure;

For xn = 1− 2−n2 , µX is a Carleson measure.
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