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In this lecture I will:

1 Introduce three questions about interpolation of values; that is,
questions of whether there is a function in a particular function space
which takes specified target values at particular points. The questions
were originally raised and answered for the Hardy space H2 and its
multiplier algebra H∞. Here I will formulate the problems for D and
M (D) .

2 I will collect the easy necessary conditions for the problem to have
solutions. They are the same for the Hardy and Dirichlet space.

3 I will tell what is known about the solutions.
4 There are striking similarities between the Hardy space and Dirichlet
space results. It is now understood that there is a deep unification of
the two through the Pick property. I will introduce that and discuss it
briefly.

5 I will say a few words about invariant subspaces, multipliers and the
Pick property.
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Questions

In 1916 Georg Pick published a solution to the following problem in
classical function theory: what are the necessary and suffi cient conditions
on sets {zi}ni=1 , {wi}

n
i=1 ⊂ D for there to be f ∈ Hol (D) with

sup {|f (ζ)|} ≤ 1 which performs the interpolation f (zi ) = wi ; i = 1, ...n?

In line with the earlier comment about the value of viewing H∞ as a
multiplier algebra, this suggests the following question forM =M (D) :

Pick Interpolation Question: Given {zi}ni=1 , {wi}
n
i=1 ⊂ D, is there

m ∈ M with ‖m‖ ≤ 1 and which performs the interpolation m(zi ) = wi ;
i = 1, ...n.

There are two related questions about interpolation of values that we also
want to consider.
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Hilbert Space Interpolation Question: Characterize the Hilbert
space interpolation sequences, HSIS. That is, for which
Z = {zi}∞

1 ⊂ D is it true that the scaled restriction map S , from D
to sequences defined on Z , given by Sf =

{
‖kzi ‖

−1 f (zi )
}
, maps D

into and onto `2 (Z )?
Note that |f (zi )| = |〈f , kzi 〉| ≤ ‖f ‖ ‖kzi ‖ and thus S automatically
maps into `∞ (Z ) .

Multiplier Interpolation Question: Characterize the multiplier
interpolation sequences, MIS. That is, for which Z = {zi}∞

1 ⊂ D is it
true that the restriction map R, from D to sequences defined on Z ,
given by Rf = {f (zi )} , mapsM(D) into and onto `∞ (Z )?
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Necessary Conditions

Necessary Condition for Pick Interpolation:: In order for the Pick
interpolation problem to have a positive solution it is necessary that
the matrix Mx(T ) = [(1− wj w̄i ) kj (zi )]ni ,j=1 be positive semidefinite.
Proof: Set K =

∨ {kzi }ni=1 . If there is an m which does the
interpolation then, as we noted earlier, for each i , M∗mki = m(zi )ki
and M∗m maps K to itself. Let T be the operator M∗m restricted to K .
We have ‖T‖ ≤ ‖M∗m‖ = ‖Mm‖ = ‖m‖M ≤ 1. Hence for any
scalars {aj} we must have∥∥∑ aj w̄jkj

∥∥2 = ∥∥T (∑ ajkj )
∥∥2 ≤ ∥∥∑ ajkj

∥∥2 .
When we compute both norms explicitly, recall that 〈kj , ki 〉 = kj (zi ) ,
and rearrange terms we find that

∑ (1− wj w̄i ) kj (zi ) aj āi ≥ 0.
The scalars {aj} were arbitrary and thus this is the condition that
Mx(T ) is positive semidefinite.
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Necessary Condition for HSIS: In order for Z to be a HSIS it is
necessary that the points of the sequence be uniformly separated:
∃ε > 0 so that ∀i , j , i 6= j ,

δ(zi , zj ) > ε. (SEP)

Also the associated measure, µZ = ∑∞
i=1 ‖kzi ‖

−2 δzi , must be a
Carleson measure:

µZ ∈ CM(D). (CM)
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Proof: If S maps into `2 it must be bounded. Hence there is a
C > 0 so that for all i , j ∃ fi .j ∈ D with (Sfi ,j )i = 0, (Sfi ,j )j = 1 and
‖fi ,j‖ ≤ C . Using the definition of S and the estimate from
Proposition 1 we find

1 = (Sfi ,j )j =
∥∥kzj∥∥−1 fi ,j (zj )

≤
∥∥kzj∥∥−1 ‖fi ,j‖ ∥∥kzj∥∥ δ(zi , zj )

≤ Cδ(zi , zj )

which insures separation.

The fact that S is bounded means that for any f

∞

∑
i=1
‖kzi ‖

−2 |f (zi )|2 ≤ C ‖f ‖2 .

The left side is
∫
|f |2 dµZ and hence this is the condition (CM).
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Necessary Condition for MIS: In order for Z to be a MIS it is
necessary that it satisfy (SEP) and (CM).

Proof: If R maps onto `∞ then one can find gi .j ∈ M so that
gi ,j (zi ) = 0, gi ,j (zj ) = 1 and ‖gi .j‖M ≤ C . On the other hand, from
the estimate in the second part of Proposition 1 we conclude that
‖gi .j‖−1M ≤ δ(zi , zj ). Combining these two estimates gives (SEP).

The analysis for (CM) is more subtle. One can give a functional
analysis argument showing that such a Z must also be an HSIS and
then use the previous proposition. We will not discuss that further.
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An aside: There is another question that is historically and technically
intertwined with the questions just discussed; it is the Corona Question for
the multiplier algebra. Suppose you are given {fi}n1 in the multiplier
algebra. Are there {gi} in the algebra so that ∑ figi = 1. Because
multipliers must be bounded we have a necessary condition

inf∑ |fi | ≥ δ > 0.

Carleson’s ’58 work on the MIS suffi ced to show that for H∞, the multiplier
algebra of H2, in a critical special case, this necessary condition is also
suffi cient. In ’62 he proved that the condition is always suffi cient (the
"Corona Theorem"). The lines of inquiry triggered by those results are still
very active and include many of the ideas discussed here.
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What is known

The Hardy space: The questions also make sense, mutatis mutandis,
for the Hardy space, H2, and its multiplier algebra, H∞. In fact that is
where these questions were first considered. In each case the answer
is that the necessary condition we gave is, in fact, also suffi cient—
either to insure that there is an interpolating function of to insure
that Z in an interpolation sequence. For Pick interpolation this was
established by Pick in 1916 , The characterization of the MIS was
done by Carleson in ’58 , the HSIS were characterized by Shapiro and
Shields in ’61 .

The Dirichlet space: It is the same story: the answer in each case is
that the necessary condition we gave is, in fact, also suffi cient. The
Pick type theorem was established by Agler in ’88 ; the MIS and HSIS
were characterized in ’94 by Bishop and, independently, in ’94 by
Marshall and Sundberg . Unfortunately their papers were not
published.

Rochberg () The Dirichlet Space June 16, 2011 11 / 20



Two natural questions

:

What are the proofs?

Why are the results so similar?

On the first question: the proofs are substantial and I don’t want to
give a rushed overview of them.

The answer to the second question leads into a large, and relatively
new, research area and I will discuss after a brief digression.
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Digression: Onto Interpolation

I am emphasizing the similarities between the Hilbert space results
and the Dirichlet space results. I will just mention here a fundamental
difference between the two which will be discussed later. In fact, the
HSIS question we formulated asks when a certain normalized
restriction map takes the function space into and onto an `2. The
question and answer are very similar for D and H2. However, for H2
the assumption that the restriction map be "into", that is, bounded,
can be dropped. In that case if the map is onto `2 it can be shown to
be bounded. (And because that is true the boundedness is sometimes
omitted when formulating the question.)

This is not true for D and hence there is a question for D which has
no real analog for H2 : How do you characterize the sequences for
which the restriction map is onto `2 even if it is perhaps not
boundedly so. This is an interesting and diffi cult question and we will
hear more about it later.
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The Pick Property

Suppose H is a RKHS of holomorphic functions on D. Suppose
further that the reproducing kernel has the form
kz (w) = ∑∞

0 an(z̄w)
n with a0 > 0. Define {cn} by the formula(

∞

∑
0
antn

)(
∞

∑
0
cntn

)
= 1 for t near 0.

We say such an H has the complete Pick property if cn ≤ 0 ∀n ≥ 1.
The Hardy space clearly has this property, the Bergman space clearly
does not. The Dirichlet space has the property but showing that
requires some clever work with power series.
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Consequences of the Pick Property:

1 For any H as above one can again formulate the Pick interpolation
question. The necessary condition we obtained earlier still applies. If
H has the complete Pick property then this necessary condition is
suffi cient.

2 There are matricial versions of the Pick interpolation question and an
analogous matricial necessary condition for having a solution. Again,
if H has the complete Pick property then this necessary condition is
suffi cient.

3 If H has the complete Pick property its HSIS and its MIS are the
same. (It is conjectured that, in this case, the conditions (CM) and
(SEP) are, together, necessary and suffi cient.)

4 If H has the complete Pick property then a great deal of structural
information about multipliers and invariant subspaces follows. We will
see a simple example in a moment.

The workhorse idea is statement 2. The definition we gave is a
devolved version that is simple, restricted, and hides a lot.
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An Application of Pick’s Theorem.

In the second talk we considered an extremal problem for multipliers of the
Dirichlet space and we obtained a conditional result: if we could find
m ∈ M with certain properties then the extremal problem had a unique
solution and we had a formula for it. We now complete the analysis by
using Pick’s theorem to show there is such an m.
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Proposition: There is an m ∈ M, with ‖m‖M ≤ 1, m(w) = 0, and
Rem(z) = δ (z ,w) .

Proof: Pick’s theorem for the Dirichlet space tells us that the
necessary and suffi cient condition for the existence of an m which
satisfies the first conditions and has Rem(z) = M is that the 2× 2
matrix T = [(1− wj w̄i ) kj (zi )]2i ,j=1 built using the data

z1 = z , z2 = w , w1 = 0, w2 = M

must be positive definite. We have

T =
(
k1 (z) k2 (z)
k1 (w)

(
1−M2

)
k2 (w)

)
.

The upper left entry is positive so T will be positive definite if the
determinant is positive

detT = k1 (z)
(
1−M2) k2 (w)− |k2 (z)|2

and this is positive exactly if M ≤ δ(z ,w).
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Pick’s Theorem, Multipliers, and Invariant Subspaces

The simplest nonconstant multiplier on H2 is z . Multiplication by z acting
on H2 shifts each normalized monomial one place and the operator is
called the Shift. Our understanding of the operator theory associated with
the shift is extremely rich. The modern theory begins with Beurling’s
description of the invariant subspaces using the inner-outer factorization
Multiplication by z acting on D, Mz , is called the Dirichlet Shift. Some of
the most basic questions about its operator theory are open: What are the
invariant subspaces of Mz ? What are the invariant subspaces of M∗z ? How
do you characterize the f ∈ D that are not contained in any nontrivial Mz

invariant subspace (that is, the cyclic vectors).
Some of the theory now used to study the Dirichlet Shift uses the
interrelationship between Hilbert space extremal problems, multiplier
extremal problems, and Pick’s theorem. The proposition we just proved is
a model example of that. That proposition establishes a link between the
invariant subspace of functions that vanish at w , a Hilbert space extremal
problem associated with w (and an auxiliary base point z) and the
solution to a multiplier extremal problem.
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Some of the theory now in place for invariant subspaces of the Dirichlet
Shift uses the interrelationship between Hilbert space extremal problems,
multiplier extremal problems, and Pick’s theorem. I want to take a
moment to state some results of that sort. I will state them in minimal
generality. (In that context some of them are almost trivial.) However
these are all results that mirror results for the Hardy Shift, they are all
results that extend to more general invariant subspaces of the Dirichlet
Shift, and, in fact, because the primary tools are the tools we have been
discussing, they have variations for general RKHS with the complete Pick
property.
For λ ∈ D, λ 6= 0 let Vλ be the subspace D consisting of all functions
which vanish at λ. Set zVλ = {zf : f ∈ Vλ} then

1 Vλ is an invariant subspace
2 dim(Vλ � zVλ) = 1
3 If hλ is the unit vector in Vλ� zVλ which is positive at the origin then

hλ = kλ,0 = mλ,0.

In particular hλ is a contractive multiplier.
4 Vλ is generated by hλ; that is, Vλ is is the smallest closed invariant
subspace containing hλ.

5 If λ′ 6= λ then there is a nontrivial invariant subspace contained in
Vλ ∩ Vλ′ .
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Comments:

1 The most easily described invariant subspaces are the subspaces of
functions which vanish on a specified set Z . However, as we will see
in the next lecture, it is not at all clear which Z give a nontrivial
subspace

2 This is called the "codimension one" property. It is elementary in this
case. The subtle fact is that every invariant subspace of the Dirichlet
Shift has it.

3 It is particularly interesting to know that V contains a multiplier, see
5. below.

4 Again, this case is elementary. The subtle fact is that the hλ of 3. will
always be a generator.
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