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Overview

In these lectures we discuss two theorems regarding the function
theory of the classical Dirichlet space D:

1 The characterization of interpolating sequences Z = fzjg∞
j=1 � D for

D and its multiplier algebra MD in terms of separation of the points
zj and embedding of the Dirichlet space in a Lebesgue space L2 (µZ ),
where µZ = ∑∞

j=1
1

1+β(0,zj )
δzj ;

2 A characterization of the holomorphic functions b (called symbols) for
which the bilinear form Bb (f , g) � hfg , biD is bounded on D �D.

These theorems have some counterparts for p 6= 2 and n > 1, but the
proofs are often more di¢ cult and the results incomplete.
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Overview
Interpolating sequences

Theorem
Z = fzjg∞

j=1 is interpolating for D, equivalently MD, if and only if Z is
separated and µZ � ∑∞

j=1
1

1+β(0,zj )
is a Carleson measure.

A sequence of points Z = fzjg∞
j=1 in the unit disk D is said to be

interpolating for D if the weighted restriction map RZ : D ! `∞

given by

RZ f �
(

f (zj )p
1+ β (0, zj )

)∞

j=1

, β (0, zj ) � ln
1

1� jzj j
,

maps into and onto `2; and interpolating for the multiplier algebra
MD if R : MD ! `∞ is onto where Rf = ff (zj )g∞

j=1.

The sequence Z is separated if inf i 6=j β (zi , zj ) > 0.
A positive measure µ is a Carleson measure if D � L2 (µ).
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Overview
Bilinear Hankel forms

For a holomorphic symbol function b de�ne the bilinear form

Tb (f , g) � hfg , biD = fgb (0) +
Z

D

�
f 0g + fg 0

�
b0.

A result of Rochberg and Wu is that the half forms
R

D
(f 0g) b0 andR

D
(fg 0) b0 are each bounded on D �D if and only if b 2 X , where

X is the space of holomorphic functions with norm

kbkX � jb(0)j+



��b0(z)��2 dA


 12

CM (D)
< ∞.

The question arises as to whether or not there is signi�cant
cancellation in the sum of the half forms, and the answer is NO:

kbkX � kTbkD�D � sup
kf kD ,kgkD�1

jTb (f , g)j .
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Overview
Bilinear Hankel forms and the Two Weight Inequality for the Hilbert transform

Splitting a bilinear form B into natural pieces B1 and B2, and then
asking if the pieces Bi are each bounded when B is, is a question that
arises often.

For example, the usual attack (initiated by Nazarov, Treil and
Volberg) on the two weight norm inequality for the Hilbert transform

jhH (f σ) , giωj . kf kL2(σ) kgkL2(ω) ,
begins by splitting the bilinear form on the left according to the
length of the intervals in the Haar decompositions
f = ∑I dyadic hf , hσ

I i hσ
I and g = ∑J dyadic hg , hω

J i hω
J :

hH (f σ) , giω =

 
∑

jI j�jJ j
+ ∑
jI j>jJ j

!
hf , hσ

I i hH (hσ
I σ) , hω

J iω hg , hω
J i.

It is not known if the boundedness of B1 = ∑jI j�jJ j and B2 = ∑jI j>jJ j
follow from that of B = hH (f σ) , giω.
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Part 2

Preliminaries
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The unit disk
Automorphisms and invariance

Let D be the unit disk in C. Let dz be Lebesgue measure on C and
let dλ (z) = dz

π(1�jz j2)2 be the invariant measure on the disk, i.e.,Z
D
(f � ϕa) (z) dλ (z) =

Z
D
f (z) dλ (z) , a 2 D, f 2 H (D) ,

where
ϕa (z) =

a� z
1� az , a, z 2 D,

are the automorphisms of the disk.

The Poincaré/Bergman metric is

β (z ,w) � 1
2
ln
1+ jϕz (w)j
1� jϕz (w)j

, z ,w 2 D.
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Cauchy�s formula

Cauchy�s formula yields

f (z) =
1
2πi

Z
T

f (w)
w � z dw =

1
2πi

Z
T

f
�
e iθ
�

e iθ � z ie
iθdθ

=
1
2π

Z
T

f
�
e iθ
�

1� e�iθz dθ =
1
2π

Z
T
f kzdθ,

for f 2 H (D) \ C
�
D
�
, where

kz (w) �
1

1� zw , z 2 D,w 2 D.
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Magic Bullet #1

We have the following identities for a, z ,w 2 D:

1� ϕa (z) ϕa (w) =

�
1� jaj2

�
(1� zw)

(1� aw) (1� za) =
kw (a) ka (z)
kw (z) ka (a)

,

1� jϕa (z)j
2 =

�
1� jaj2

� �
1� jz j2

�
j1� zaj2

=
jka (z)j2

kz (z) ka (a)
.

With the de�nitions d (zi , zj ) �
��� zi�zj1�zj zi

��� and ekz (w) � kz (w )p
kz (z )

, the

latter can be rewritten,

d (zi , zj )
2 +

���Dfkzi ,fkzjE���2 = 1. (1)
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The pseudohyperbolic metric

The function d is called the pseudohyperbolic metric on D, and can
be generalized to the Hilbert function spaces treated below.

Because of the identity (1), d (zi , zj ) can be thought of as the sine of
the angle θij between kzi and kzj . This interpretation leads to the
following cute proof that d is a metric.
From geometry we have θi` � θij + θj`. If the right side is at most

π
2 ,

then
sin θi` � sin

�
θij + θj`

�
� sin θij + sin θj`;

otherwise, we have

sin θi` � 1 � sin θij + sin θj`.

Finally, there is a formula relating the Bergman and pseudohyperbolic
metrics:

β (z ,w) =
1
2
log

1+ d (z ,w)
1� d (z ,w) .
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The Dirichlet space

The classical Dirichlet space D of holomorphic functions f on the
unit disk D satisfying

kf kD� =
�Z

D

��f 0 (z)��2 dxdy� 1
2

=
q
Area (f (Ω)) < ∞,

occupies a pivotal endpoint niche in the theory of Hilbert spaces of
holomorphic functions satisfying Sobolev type conditions.

As such, D inherits much of the character of the space BMO of
functions of bounded mean oscillation on the real line R, which in
turn occupies a pivotal endpoint niche among the somewhat di¤erent
scale of Lebesgue spaces on the line.
For all automorphisms ϕ of the disk, there is the invariance

kf � ϕkD� =
Z

D

��f 0 (ϕ (z))��2 ��ϕ0 (z)��2 dz = Z
D

��f 0 (w)��2 dw = kf kD� .
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Consequences of �nite area

If B is a �nite Blaschke product in the disk,

B (z) = zk
N�k
∏
n=1

αn � z
1� αnz

jαn j
αn
, 0 � k � N,

then B
�
e iθ
�
wraps around the circle T = ∂D exactly N times and so

the area (counting multiplicities) of the image B (D) is Nπ.

A thorny consequence of this is that the Dirichlet space contains no
in�nite Blaschke products (since their images cover the disk in�nitely
often), and hence the zeroes of a Dirichlet space function cannot be
factored out as is the case for a Hardy space function.
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Carleson measures

A geometric characterization of when the Dirichlet space D embeds
in the Lebesgue space L2 (µ) is the testing condition:Z

S (z )
µ (S (w))2

dw�
1� jw j2

�2 � Ctestingµ (S (z)) , z 2 D.

An earlier capacity condition characterization of Stegenga is

µ

 [
z2F

S (z)

!
. CcapacityCap

 [
z2F

I (z)

!
, I (z) = ∂S (z) \T.

We denote by kµkCM (D) the square of the norm of the embedding so
that

kµkCM (D) � Ctesting � Ccapacity .
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A connection between conditions

Upon passing to boundary values, the capacity condition is equivalent
to the weak type potential inequality


I 1

2
f




L2,∞(µ)

. kf kL2(T) ,

which by duality is equivalent to the restricted strong type inequality


I 1
2
(gµ)





L2(T)

. kgkL2,1(µ) ,

which by de�nition holds if and only if


I 1
2
(1Eµ)





L2(T)

. k1E kL2,1(µ) =
q
jE jµ, all sets E � T.

On the other hand, the boundary equivalent of the testing condition is


I 1
2
(1Iµ)





L2(T)

. k1I kL2,1(µ) =
q
jI jµ, all arcs I � T,

which gives the inequality Ctesting . Ccapacity .
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The tree Dirichlet space

It turns out that the Dirichlet space D (D) can be e¤ectively
modeled on the tree T by the following Hilbert space of
complex-valued functions f : T ! C on T :

D (T ) =
(
f = (f (α))α2T : ∑

α2T
j4f (α)j2 < ∞

)
,

with inner product

hf , gi = ∑
α2T

4f (α)4g (α),

and where the backward di¤erence operator 4 is de�ned on functions
f by

4f (α) =
�

f (o) if α = o
f (α)� f (Pα) if α 6= o .
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Continuity of the restriction map

The restriction map R : D (D)! D (T ) de�ned by
Rf = (f (c (α)))α2T for f 2 D (D) turns out to be continuous.

To see this let α 2 T , and denote by Bα the largest ball contained in
K (α) that is centered at c (α). In addition denote by Hα the convex
hull of Bα and BPα. Then the mean value property for holomorphic
functions, the fundamental theorem of calculus and the change of
variable ω = tz + (1� t) ζ give the following chain of (in)equalities:
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Chain of (in)equalities

jf (α)� f (Pα)j = jf (c (α))� f (c (Pα))j

=

���� 1jBαj

Z
Bα

f (z) dz � 1
jBPαj

Z
BPα

f (ζ) dζ

����
=

���� 1jBαj
1

jBPαj

Z
Bα

Z
BPα

[f (z)� f (ζ)] dzdζ

����
=

���� 1jBαj
1

jBPαj

Z
Bα

Z
BPα

Z 1

0
(z � ζ) � rf (tz + (1� t) ζ) dtdzdζ

����
� diam (Hα)

1
jBαj

1
jBPαj

Z
Bα

Z
BPα

Z 1

0

��f 0 (tz + (1� t) ζ)
�� dtdzdζ

� Cdiam (Hα)
1
jHαj

Z
Hα

��f 0 (ω)�� dω.
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Restriction and Carleson measures

Now we compute that

kRf k2D(T ) = jf (o)j2 + ∑
α2T

jf (α)� f (Pα)j2

� jf (0)j2 + C ∑
α2T

diam (Hα)
2

jHαj

Z
Hα

��f 0 (ω)��2 dω

� jf (0)j2 + C
Z

D

��f 0 (ω)��2 dω � C kf k2D(D) ,

since diam (Hα)
2 � jHαj and the sets Hα have �nite overlap at most

two in the disk.

A major advantage of the model space D (T ) is that the so-called
Carleson measures for D (T ) are easily calculated; these are the
positive measures µ on T , which here are the same as the
nonnegative functions µ on T , for which we have an embedding of
D (T ) into L2 (µ), i.e.

kf k2L2(µ) � C kf k
2
D(T ) , f 2 D (T ) . (2)
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Re�ections on trees

Trees have been used in analysis for some time, but possibly the �rst
instance of their use in the spirit above occurs in the atomic
decomposition of spaces of holomorphic functions in Coifman and
Rochberg. The above tree model has an equally simple and e¤ective
analogue in the case of the spaces Bσ

2 (D) when 0 � σ < 1
2 .

However, the model must be signi�cantly changed in order to be of

use for the Hardy space B
1
2
2 (D) = H

2 (D).

In higher dimensions, one can construct an analogue Tn for the ball
Bn of the tree T constructed above for the disk, but the construction
is necessarily messy due to the fact that the sphere Sk is not neatly
tiled when k > 1. While the corresponding tree space D (Tn) remains
e¤ective for calculating the Carleson measures of the Dirichlet space
B02 (Bn) = D (Bn) on the ball, it is no longer an adequate model for
characterizing interpolation for the Dirichlet space since the
corresponding restriction map R fails to be continuous from D (Bn)
to D (Tn) when n > 1.
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Re�ections on trees 2

Instead one can introduce a holomophic structure on the tree Tn
(that mirrors the holomorphic geometry of the ball) and rede�ne the
model space D (Tn) to take this structure into account.

The result is that the restriction operator is now continuous, and
using this with some other special properties of the model, the
Carleson measures and interpolating sequences for D (Bn) can be
characterized.

Finally, the unstructured model D (Tn) extends to an e¤ective model
for calculating Carleson measures for the spaces Bσ

2 (Bn) with
0 � σ < 1

2 . But again, this model breaks down at the Drury-Arveson

Hardy space B
1
2
2 (Bn) = H2n .

Yet a di¤erent geometric structure is needed on the tree Tn to
compute the Carleson measures for the Drury-Arveson Hardy space
H2n .
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Part 3

Interpolating sequences

The most satisfying proof solves the interpolating
problem for a large collection of Hilbert spaces,
those with the complete Nevanlinna-Pick property,
so we begin with a discussion of Hilbert function
spaces.
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Reproducing kernels

For f (z) = ∑∞
n=0 anz

n and g (z) = ∑∞
n=0 bnz

n, the inner product

corresponding to the norm
q
kf k2H 2 + kf k

2
D satis�es

hf , giD(D) =
Z

T
f (ζ) g (ζ)dm (ζ) +

1
π

Z
D
f 0 (z) g 0 (z)dxdy

=
∞

∑
n=0

(n+ 1) anbn, f , g 2 D (D) ,

The reproducing kernel kz (w) for the Dirichlet space is given by

kz (w) =
1
zw

log
1

1� zw =
∞

∑
n=0

1
n+ 1

znwn,

where the branch of log is taken to satisfy log 1 = 0. Indeed, with
g = kz we have bn = 1

n+1 z
n for n � 0 and so

hf , kz iD(D) =
∞

∑
n=0

(n+ 1) an
1

n+ 1
zn =

∞

∑
n=0

anzn = f (z) .
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Hilbert function spaces

A Hilbert space H is said to be a Hilbert function space (aka a
reproducing kernel Hilbert space - RKHS) on a set Ω if the elements
of H are complex-valued functions f on Ω with the usual vector
space structure, such that each point evaluation on H is a nonzero
continuous linear functional, i.e. for every x 2 Ω there is a positive
constant Cx such that

jf (x)j � Cx kf kH , f 2 H, (3)

and there is some f with f (x) 6= 0.

The Riesz theorem shows there is a unique element kx 2 H such that

f (x) = hf , kx i for all x 2 Ω.

The element kx is called the reproducing kernel at x , and satis�es

kx (y) = hky , kx i , x , y 2 Ω.
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Positive semide�nite kernels

Recall that a matrix A = [aij ]
N
i ,j=1 is semipositive de�nite, written

A � 0, if

ξ � Aξ =
N

∑
i .j=1

ξ i ξ jaij � 0, ξ 2 CN .

The function k (x , y) � hky , kx i = kx (y) is self-adjoint
(k (x , y) = k (y , x)), and for every �nite subset fxigNi=1 of Ω, the
matrix [k (xi , xj )]1�i ,j�N is positive semide�nite:

N

∑
i ,j=1

ξ i ξ jk (xi , xj ) =
N

∑
i ,j=1

ξ i ξ j


kxj , kxi

�
=

*
N

∑
j=1

ξ jkxj ,
N

∑
i=1

ξ ikxi

+
=






 N

∑
i=1

ξ ikxi







2

H
� 0.
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The connection with inner products

Given a kernel function k on Ω�Ω, de�ne an inner product on �nite
linear combinations ∑N

i=1 ξ ikxi of the functions kxi (ζ) = k (ζ, xi ), ζ 2 Ω,
by *

N

∑
i=1

ξ ikxi ,
N

∑
j=1

ηjkxj

+
=

N

∑
i .j=1

ξ iηjk (xj , xi ) ,

and de�ne the associated Hilbert function space Hk to be the completion
of the functions ∑N

i=1 ξ ikxi under the norm corresponding to the above
inner product.

Theorem
(E. H. Moore) The Hilbert space Hk has kernel k. If H and H0 are Hilbert
function spaces on Ω that have the same kernel function k, then there is
an isometry from H onto H0 that preserves the kernel functions kx , x 2 Ω.
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Pointwise multipliers

A function ϕ : Ω ! C is said to be a pointwise multiplier on a
Hilbert function space H if ϕf 2 H for all f 2 H. From the closed
graph theorem we see that the operatorMϕ : H ! H de�ned by
Mϕf � ϕf is bounded. The linear space of all such functions is
denotedMH.

Now assume that H contains the constant functions. ThenMH � H
since ϕ = ϕ1. Moreover, the supremum norm of ϕ, namely
kϕk∞ � supx2Ω jϕ (x)j, is bounded by the operator norm of Mϕ.

But much more is actually true, namely that for each x 2 Ω, the
reproducing kernel kx is an eigenvector of the adjoint operator
M�

ϕ : H ! H with corresponding eigenvalue ϕ (x).
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Magic Bullet #2

Suppose H is a Hilbert function space on Ω. For ϕ 2 MH, f 2 H and
x 2 Ω, D

f ,M�
ϕkx
E
=



Mϕf , kx

�
=
�
Mϕf

�
(x)

= ϕ (x) f (x)

= ϕ (x) hf , kx i =
D
f , ϕ (x)kx

E
,

which implies M�
ϕkx = ϕ (x)kx , and in particular,

jϕ (x)j kkxk =



ϕ (x)kx




 = 


M�
ϕkx



 � 


M�

ϕ




 kkxk = 

Mϕ



 kkxk .
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The Nevanlinna-Pick interpolation problem

Suppose that H is a Hilbert function space of analytic functions on Ω
with reproducing kernel kw (z). Let Z = fzjgJj=1 be a �nite set of
points in Ω and consider the Nevanlinna-Pick interpolation problem:
For which sequences of data

�
ξ j
	J
j=1

� C is there ϕ 2 MH with
muliplier norm one satisfying

ϕ (zj ) = ξ j , 1 � j � J? (4)

There is an easy necessary condition for the data in terms of a certain
matrix being positive semide�nite. If



Mϕ



 � kϕkMH
� 1 then


M�

ϕ




 � 1 and for every choice of scalars fλjgJj=1 � C we have

0 �





 J

∑
j=1

λjkzj







2

�





M�

ϕ

 
J

∑
j=1

λjkzj

!





2

=
J

∑
j ,m=1

�
1� ξ j ξm

�
kzj (zm) λjλm ,

which is ��
1� ξ j ξm

�
kzj (zm)

�J
j ,m=1

� 0. (5)
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The Nevanlinna-Pick property and extremal problems

We say that the Hilbert space H (more precisely the inner product of
H) has the Nevanlinna-Pick property (NPP) if the implication above
can be reversed.

De�nition

The Hilbert space H has the Nevanlinna-Pick property if whenever (5)
holds, there is ϕ 2 MH with muliplier norm one satisfying (4).

There is a stronger notion called the complete Nevanlinna-Pick property
(CNPP) that asserts the analogous property for matrix-valued multipliers
mapping H 
Cs to H 
Ct , and for all positive integers s, t 2 N.
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An extremal problem

There is a surprising consequence of the Nevanlinna-Pick property for
certain extremal problems. Let Z = fzjg∞

j=1 and z0 /2 Z . Let f0 be
the unique solution to the extremal problem

Re f0 (z0) = fRe f (z0) : f (zj ) = 0 for 1 � j < ∞ and kf k � 1g .
(6)

Note that the solution exists and is unique because for each real t,
there is a unique element of minimal norm in the closed convex set

Et = ff 2 H : Re f (z0) = t, f (zj ) = 0 for 1 � j < ∞ and kf k � 1g .
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Solving the extremal problem

From the de�nition of f0 we have

jλ0f0 (z0)j =
�����
*

∞

∑
j=0

λjkzj , f0

+����� �





 ∞

∑
j=0

λjkzj






 ,
which in terms of the data ξ0 =

jf0(z0)j
kkz0k

and ξ j = 0 for 1 � j < ∞ can

be rewritten as

0 �





 ∞

∑
j=0

λjkzj







2

� jλ0f0 (z0)j2 =
∞

∑
j ,m=0

�
1� ξ j ξm

�
kzj (zm) λjλm .

Since H has the Nevanlinna-Pick property, there is ϕ0 2 MH with
norm at most one satisfying

ϕ0 (z0) = ξ0 =
jf0 (z0)j
kkz0k

and ϕ0 (zj ) = 0 for 1 � j < ∞.
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A remarkable identity

Thus the function ρ (z) � ϕ0 (z)
kz0 (z )

kkz0k
satis�es

kρk =




ϕ0

kz0
kkz0k





 � 

Mϕ



 



 kz0
kkz0k





 � 1,
and

Re ρ (z0) = Re
�

ϕ0 (z0)
kz0 (z0)
kkz0k

�
=
jf0 (z0)j
kkz0k

kkz0k
2

kkz0k
= jf0 (z0)j

and ρ (zj ) = 0 for 1 � j < ∞.

By the uniqueness of the solution to the extremal problem (6), we
obtain the remarkable identity,

f0 (z) = ϕ0 (z)
kz0 (z)
kkz0k

. (7)
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Consequences of the remarkable identity

Every zero set of a function in H is included in a zero set of a
function inMH . Indeed, if Z = fzjg∞

j=1 is the zero set of f 2 H, then
the extremal problem (6) has a solution provided z0 /2 Z . But then
ϕ0 2 MH vanishes on Z as well.

Every interpolating set Z for H, De�nition: RZ : H ! `2 is bounded

and onto where RZ f =

(
f (zj )


kzj 




)∞

j=1

, is also an interpolating set for

MH , De�nition: R (MH ) = `
∞. Note that these de�nitions agree

with those given earlier in the case H = D since

kkzk2D = hkz , kz iD = kz (z) =
1

jz j2
ln

1

1� jz j2
� 1+ β (0, z) .
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Equivalence of interpolating sequences for NPP spaces

Theorem

Suppose H is a Hilbert function space with the Nevanlinna-Pick property.
Then a set Z is interpolating for H if and only if Z is interpolating for MH .

Proof: If Z is interpolating for H, then
�
kzj
	∞
j=1 is a Riesz basis,

∑∞

j=1 ajkzj


 � kfajgk`2 , and consequently satis�es the unconditional

basic sequence condition: if jaj j � jbj j, then




 ∞

∑
j=1
ajkzj






 � C 


fajg∞
j=1





`2(µZ )

� C



fbjg∞

j=1





`2(µZ )

� C





 ∞

∑
j=1
bjkzj






 .
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The proof continued

We seek to solve the interpolation

ϕ (zj ) = ξ j , 1 � j < ∞,

with ϕ 2 MH of norm at most one whenever



�ξ j

	∞
j=1





∞
� δ, with

δ > 0 su¢ ciently small.

But for δ � 1
C we have

��ξ jλj �� � jλj j
C , and the unconditional basic

sequence condition implies

0 � C 2





 ∞

∑
j=1

λj
C
kzj







2

�





 ∞

∑
j=1

ξ jλjkzj







2

=
∞

∑
j ,m=1

�
1� ξ j ξm

�
kzj (zm) λjλm .

The Nevanlinna-Pick property now yields the desired solution
ϕ 2 MH .
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The proof continued

Conversely, multiplier interpolation implies that the normalized
reproducing kernels corresponding to Z are an unconditional basic
sequence: Given jbj j � jaj j, choose ϕ 2 MH such that bj = ϕ (zj )aj .
Then Magic Bullet #2 gives




 ∞

∑
j=1
bj

kzj

kzj







 =






 ∞

∑
j=1

ϕ (zj )aj
kzj

kzj









=






M�
ϕ

 
∞

∑
j=1
aj
kzj

kzj



!




 �





 ∞

∑
j=1
aj
kzj

kzj








 .

Now the following expectation calculation shows that

(
kzj


kzj 



)∞

j=1

is a

Riesz basis, which is equivalent to H interpolation.
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UBS impies RB

To show that UBS implies RB, we use the fact that for any �nite
collection of vectors fvngNn=1 in a Hilbert space H there is θ 2 [0, 2π)
such that 




 N

∑
n=1

e inθvn







2

=
N

∑
n=1

kvnk2 . (8)

Indeed, we simply compute the expectation,

1
2π

Z 2π

0






 N

∑
n=1

e inθvn







2

dθ =
N

∑
m,n=1

hvm , vni
1
2π

Z 2π

0
e i (m�n)θdθ

=
N

∑
n=1

kvnk2 ,

and then use the intermediate value theorem with the continuity of
∑N
n=1 e

inθvn in θ when N < ∞.
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UBS impies RB 2

From (8) we thus obtain

N

∑
n=1

jan j2 =
N

∑
n=1





an kzn
kkznkH 2





2
H 2
=






 N

∑
n=1

e inθan
kzn

kkznkH 2







2

H 2

,

and hence from UBS that




 N

∑
n=1

e inθan
kzn

kkznkH 2







2

H 2

� C





 N

∑
n=1

an
kzn

kkznkH 2







2

H 2

,

and 




 N

∑
n=1

e�inθ
�
e inθan

� kzn
kkznkH 2







2

H 2

� C





 N

∑
n=1

e inθan
kzn

kkznkH 2







2

H 2

.

Now let N ! ∞ to obtain RB.
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The classical spaces

For an integer m � 0, and for 0 � σ < ∞, m+ σ > 1/2 the analytic
Besov-Sobolev spaces Bσ

2 (D) consist of those holomorphic functions
f on the disk such that(

m�1
∑
k=0

���f (k ) (0)���2 + Z
D

�����1� jz j2�m+σ
f (m) (z)

����2 dλ (z)

) 1
2

< ∞.

(9)
The spaces Bσ

2 (D) are independent of m and are Hilbert spaces with
inner product hf , gi given by
m�1
∑
k=0

f (k ) (0) g (k ) (0) +
Z

D

�
1� jz j2

�2(m+σ)
f (m) (z) g (m) (z)dλ (z) .

The space Bσ
2 (D) is a Hilbert function space on D, and has

reproducing kernel kσ
z (w) given by

kσ
z (w) �

( � 1
1�wz

�2σ
if 0 < σ < 1

2
1
wz log

1
1�wz if σ = 0

, z 2 D,w 2 D.
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Magic Bullet #3

For 0 � σ � 1
2 the spaces B

σ
2 (D) have the complete Nevanlinna-Pick

property (CNPP). This includes the Dirichlet space D (D) = B02 (D).
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Certain spaces with NP kernel

Theorem

Suppose 0 � σ � 1
2 , Z � D and µZ = ∑z2Z k

σ
z (z)

� 1
2 δz . Then Z is an

interpolating sequence for Bσ
2 (D) if and only if Z is an interpolating

sequence for the multiplier algebra MB σ
2 (D)

if and only if Z satis�es the
separation condition inf i 6=j β (zi , zj ) > 0 and µZ is a B

σ
2 (D)-Carleson

measure.

We invoke a theorem of B. Böe which says that for certain Hilbert
spaces with reproducing kernel, in the presence of the separation
condition, a necessary and su¢ cient condition for a sequence to be
interpolating is that the Grammian matrix

G �
"*

kzi
kkzi k

,
kzj


kzj 



+#∞

i ,j=1

associated with Z is bounded.
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The Technical Property

The spaces to which Böe�s Theorem applies are those where the
kernel has the Nevanlinna-Pick property, and which have the following
additional Technical Property. Whenever we have a sequence for
which the matrix G is bounded on `2 then the matrix with absolute

values

"�����
*

kzi
kkzi k

,
kzj


kzj 



+�����
#∞

i ,j=1

is also bounded on `2.

For 0 � σ < 1
2 the Technical Property holds because

Re
�

1
1�zj zi

�2σ
�
��� 1
1�zj zi

���2σ
, which insures that the Gramm matrix has

the desired property. For σ = 0 a slightly di¤erent ending will be
given to the proof.

Finally, the boundedness on `2 of the Grammian matrix is equivalent
to µZ = ∑∞

j=1



kzj

�2 δzj = ∑∞
j=1(1� jzj j2)2σδzj being a Carleson

measure, so matters are reduced to Böe�s Theorem once we know
Bσ
2 (D) has the NPP.
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Boundedness of the Grammian

The Grammian matrix G is bounded on `2 if and only if µZ is a
Carleson measure for H. To see this let T : H ! `2 be the

normalized restriction map Tf =

(
f (zj )


kzj 




)∞

j=1

. Then µZ is a Carleson

measure for H if and only if T is bounded.

But T �
�

ξ j
	∞
j=1

= ∑∞
j=1 ξ j

kzj


kzj 


 and so the matrix representation of
TT � relative to the standard basis fejg∞

j=1 of `
2 is the Grammian:

[hTT �ei , ej i]∞i ,j=1 =

��
T
�
kzi
kkzi k

�
, ej

��∞

i ,j=1

=

��
kzi (zj )
kkzi k

��∞

i ,j=1
=

"*
kzi
kkzi k

,
kzj

kzj



+#∞

i ,j=1

.

Now use that T is bounded if and only if TT � is bounded.
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normalized restriction map Tf =

(
f (zj )


kzj 




)∞

j=1

. Then µZ is a Carleson

measure for H if and only if T is bounded.

But T �
�

ξ j
	∞
j=1

= ∑∞
j=1 ξ j

kzj


kzj 


 and so the matrix representation of
TT � relative to the standard basis fejg∞

j=1 of `
2 is the Grammian:

[hTT �ei , ej i]∞i ,j=1 =

��
T
�
kzi
kkzi k

�
, ej

��∞

i ,j=1

=

��
kzi (zj )
kkzi k

��∞

i ,j=1
=

"*
kzi
kkzi k

,
kzj

kzj



+#∞

i ,j=1

.

Now use that T is bounded if and only if TT � is bounded.
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Certain Besov-Sobolev spaces have the NPP

Agler and McCarthy showed that a reproducing kernel k has the
complete Nevanlinna-Pick property if and only if for any �nite set
fz1, z2, ..., zmg, the matrix Hm of reciprocals of inner products of
reproducing kernels kzi for zi , i.e.

Hm =

"
1


kzi , kzj
�#m

i ,j=1

,

has exactly one positive eigenvalue counting multiplicities.

Expand


kzi , kzj

��1 by the binomial theorem as

(1� zjzi )2σ = 1�
∞

∑
`=1

c` (zjzi )
` ,

where 0 � c` = (�1)`+1
�
2σ
`

�
for ` � 1 and 0 < 2σ < 1.
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The proof continued

The matrix [zjzi ]
m
i ,j=1 is nonnegative semide�nite since

m

∑
i ,j=1

ζ i (zjzi ) ζ i = j(ζ1z1, ..., ζmzm)j
2 � 0.

Thus by Schur�s Theorem so is
h
(zjzi )

`
im
i ,j=1

for every ` � 1, and
hence, also, so is the sum with positive coe¢ cients.

Thus the positive part of the matrix Hm is [1]
m
i ,j=1 which has rank 1,

and hence the sole positive eigenvalue of Hm is m.
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Böe�s Theorem

Theorem
Suppose H is a Hilbert space of analytic functions with a Nevanlinna-Pick
reproducing kernel k (x , y), so that H = Hk . Suppose also that the
Grammian has the Technical Property: whenever fzjg∞

j=1 is a sequence for
which the matrix G is bounded on `2 then the matrix with absolute values
is also bounded on `2. Then a sequence Z = fzjg∞

j=1 is interpolating for

H if and only if Z is separated and µZ = ∑∞
j=1



kzj

�2 δzj is a Carleson
measure for H.
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Proof of Böe�s Theorem

If Z is interpolating for H, standard arguments show that Z is
separated and that µZ is a Carleson measure for H.

Conversely, the Grammian matrix G is bounded on `2. To show that

Z is interpolating for H it su¢ ces to show that
nfkzio∞

j=1
is a Riesz

basis, where fkzi = kzi
kkzi k

is the normalized reproducing kernel for H.

Let ffjg∞
j=1 be the biorthogonal functions de�ned as the unique

minimal norm solutions of

fn (zm)
kkzmk

=
D
fn, fkzmE = δnm .
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Proof of BT continued 2

If P denotes projection onto the closed linear span _∞
j=1kzj of the kzj ,

then
D
Pfn, fkzmE = Dfn, fkzmE = δnm and so fn = Pfn 2 _∞

j=1kzj . By

Bari�s Theorem,
nfkzio∞

j=1
is a Riesz basis if and only if bothhDfkzn , fkzmEi∞

m,n=1
and [hfn, fmi]∞m,n=1 are bounded matrices on `2.

We already know that
hDfkzn , fkzmEi∞

m,n=1
is bounded, so it remains to

show that [hfn, fmi]∞m,n=1 is also.

For A � Z = fzjg∞
j=1 let HA = ff 2 H : f (a) = 0 for a 2 Ag. If

kAw (z) is the reproducing kernel for HA, then


kAw 

2 = kAw (w) and

kAw (w) = sup
n
jf (w)j : f 2 HA with kf k =




kAw 


o .
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Proof of BT continued 3

It follows that with Zn = Z n fzng, we have

fn (z) =
kkznk


kZnzn 


2 k

Zn
zn (z) , n � 1.

Note in particular that

kfnk =
kkznk


kZnzn 


 and

kZnzn (zm)


kZnzn 


 kkzmk =
fn (zm)

kkzmk kfnk
=

δnm
kfnk

.

We now compute the entries hfn, fmi in the biorthogonal Grammian
[hfn, fmi]∞m,n=1 in terms of the corresponding entries

Dfkzn , fkzmE in the
Grammian

hDfkzn , fkzmEi∞

m,n=1
. We have

hfn, fmi =
kkznk kkzmk


kZnzn 


2 


kZmzm 


2

D
kZnzn , k

Zm
zm

E
. (10)
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Proof of BT continued 4

Now we use that the reproducing kernels kA[fagw for HA[fag are given
in terms of those kAw for HA by the formula

kA[fagw (z) = kAw (z)�
kAa (z) k

A
w (a)

kAa (a)
.

If we set

Zm,n = Z n fzm , zng = Zn n fzmg = Zm n fzng ,

we thus obtain

kZnzn (z) = k
Zm,n
zn (z)� k

Zm,n
zm (z) kZm,nzn (zm)

kZm,nzm (zm)
, (11)

and the same formula with m and n interchanged.
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Proof of BT continued 5

Then we haveD
kZnzn , k

Zm
zm

E
=

*
kZnzn , k

Zm,n
zm � k

Zm,n
zn kZm,nzm (zn)

kZm,nzn (zn)

+

=
D
kZnzn , k

Zm,n
zm

E
� k

Zm,n
zm (zn)

kZm,nzn (zn)

D
kZnzn , k

Zm,n
zn

E
= kZnzn (zm)�

kZm,nzm (zn)

kZm,nzn (zn)
kZnzn (zn) .

(Institute) Interpolating sequences and bilinear Hankel forms for the classical Dirichlet spaceJune 20, 2011 52 / 149



Proof of BT continued 6

Now from (11) we have

kZnzn (zn) = k
Zm,n
zn (zn)�

kZm,nzm (zn) k
Zm,n
zn (zm)

kZm,nzm (zm)
= σnmk

Zm,n
zn (zn) ,

where

σnm =
kZnzn (zn)

kZm,nzn (zn)
=



kZnzn 

2


kZm,nzn




2 = 1�
kZm,nzm (zn) k

Zm,n
zn (zm)

kZm,nzn (zn) k
Zm,n
zm (zm)

. (12)

This is at most 1 since���kZm,nzm (zn)
��� = ���DkZm,nzm , kZm,nzn

E��� � 


kZm,nzm




 


kZm,nzn




 = qkZm,nzm (zm) k
Zm,n
zn (zn)

by Cauchy-Schwarz.
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Proof of BT continued 7

Note that


kZnzn 

2 = σnm




kZm,nzn




2. Combining equalities yields
D
kZnzn , k

Zm
zm

E
= kZnzn (zm)�

kZm,nzm (zn)

kZm,nzn (zn)
kZnzn (zn) (13)

= kZnzn (zm)�
kZm,nzm (zn)

kZm,nzn (zn)
σnmk

Zm,n
zn (zn)

= kZnzn (zm)� σnmk
Zm,n
zm (zn) ,

and

kfnk =
kkznk


kZnzn 


 and σnm =



kZnzn 

2


kZm,nzn




2 .

Note that kZnzn (zm) = 0 for m 6= n.
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Proof of BT continued 8

From the solution (7) to the extremal problem (6) with Zm,n in place
of Z , and zm in place of z0, we obtain after renormalizing ϕ0,

kZm,nzm (z)


kZm,nzm




2 = ϕmn (z)
kzm (z)

kkzmk
2 , (14)

where ϕmn 2 MH is the unique extremal solution to

CMH (m, n) = inf
n
kϕkMH

: ϕ (zm) = 1 and ϕ (zj ) = 0 for j 2 Zm,n
o
.

Before turning to a bound for CMH (m, n), we complete the
calculation of the biorthogonal Grammian [hfn, fmi]∞m,n=1.
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Proof of BT continued 9
The biorthogonal Grammian

For m 6= n we have kZnzn (zm) = 0, and hence from (10), (13) and (14) we
obtain

hfn, fmi =
kkznk kkzmk


kZnzn 


2 


kZmzm 


2

n
�σnmk

Zm,n
zm (zn)

o

= � kkznk kkzmk


kZnzn 


2 


kZmzm 


2 σnm




kZm,nzm




2 ϕmn (zn)
kzm (zn)

kkzmk
2

= �kfnk2
σnm
σmn

ϕmn (zn)
kzm (zn)

kkzmk kkznk
= �kfnk2 ϕmn (zn)

Dfkzm ,fkznE ,
since σnm = σmn by (12).
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Proof of BT continued 10
Generalized Blaschke products

Using the Nevanlinna-Pick property and the identity (1) for H, there
is a unique multiplier ψ = ψz0z1 = ϕ0 2 MH of norm at most one
satisfying the interpolation,

ψ (z0) = d (z0, z1) =

s
1� jhkz0 , kz1ij

2

kkz0k
2 kkz1k

2 and ψ (z1) = 0,

and moreover, it is given by,

ψz0z1 (z) = d (z0, z1)
�1
�
1� hkz0 , kz1i kz1 (z)hkz1 , kz1i kz0 (z)

�
. (15)

We will refer to ψz0z1 as the generalized Blaschke function associated
to the pair of points (z0, z1). It vanishes at z1 and is positive at z0.
More generally, for Z = fzng∞

n=1, we will refer to the in�nite product

Bz0Z (z) =
∞

∏
n=1

ψz0zn (z) as the generalized Blaschke product in MH

associated to the set Z = fzng∞
n=1 with pole at z0 /2 Z .
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Proof of BT continued 11
The Blaschke condition

Theorem
Suppose H is a Hilbert space of analytic functions with a Nevanlinna-Pick
reproducing kernel k (x , y). Fix a sequence Z = fzjg∞

j=1 and z0 /2 Z.
Then Bz0Z (z) is not identically zero if and only if

Bz0Z (z0)
2 �

∞

∏
n=1

d (z0, zn)
2 > 0 if and only if µZ is a �nite measure.

Indeed, if the sequence fz0g [ Z is separated and the measure µZ is �nite,

jhkn, kzm ij
kkznk kkzmk

� (1� ε) ,

∞

∑
n=1

jkz0 (zn)j
2

kkz0k
2 kkznk

2 =
∞

∑
n=1

Z ���fkz0 (z)���2 dµZ (z) = Cz0 ,

Bz0Z (z0)
2 =

∞

∏
n=1

ψz0zn (z0)
2 =

∞

∏
n=1

d (z0, zn)
2 > 0.
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Proof of BT continued 12

We now claim the inequality

CMH (m, n) � C , m, n � 1. (16)

Indeed, since ψzmzj (zm) = d (zm , zj ) and ψzmzj (zj ) = 0, the generalized
Blaschke product with pole zm associated with Zm,n, is

BzmZm,n (z) = ∏
j /2fm,ng

ψzmzj (z)

=

(
∏

j /2fm,ng
d (zm , zj )

)
∏

j /2fm,ng
d (zm , zj )

�1 ψzmzj (z)

=

(
∏

j /2fm,ng
d (zm , zj )

)
ϕmn (z) .
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Proof of BT continued 13

Since BzmZm,n is a multiplier of norm at most one, we then have

CMH (m, n) � ∏
j /2fm,ng

d (zm , zj )
�1

� ∏
j /2fm,ng

 
1�

��
kzj , kzm���2

kzj

2 kkzmk2
!�1

� sup
m�1

∏
j 6=m

 
1�

��
kzj , kzm���2

kzj

2 kkzmk2
!�1

.
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Proof of BT continued 14

By the Carleson condition applied to fkzm = kzm
kkzm k

, we obtain

C = C



fkzm


2 � Z ��� fkzm (z)���2 dµZ (z) =

∞

∑
j=1

jkzm (zj )j
2

kkzmk
2 

kzj

2 ,

uniformly in m.

This together with separation, i.e. jkzm (zj )j
2

kkzm k
2



kzj 


2 � 1� ε for some

ε > 0, yield

∏
j 6=m

 
1�

��
kzj , kzm���2

kzj

2 kkzmk2
!
� c > 0, m � 1,

and hence (16).
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uniformly in m.

This together with separation, i.e. jkzm (zj )j
2

kkzm k
2



kzj 


2 � 1� ε for some

ε > 0, yield

∏
j 6=m

 
1�

��
kzj , kzm���2

kzj

2 kkzmk2
!
� c > 0, m � 1,

and hence (16).
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Completion of proof of BT

At this point we use (16) to conclude that jhfn, fmij � C
���Dfkzm ,fkznE���

for all m, n.

Our hypothesis on the Grammian
hDfkzn , fkzmEi∞

m,n=1
shows thath���Dfkzn , fkzmE���i∞

m,n=1
is bounded on `2, and thus so is [jhfn, fmij]∞m,n=1,

hence [hfn, fmi]∞m,n=1. This completes the proof of Böe�s Theorem.
To obtain the case σ = 1

2 of the interpolation theorem, one can
calculate that when σ = 1

2 , the expression �kfnk
2 ϕmn (zn) factors as

a product ψmψn with jψm j � C , and then the boundedness of
hfn, fmi follows immediately from that of

Dfkzm ,fkznE.
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An open problem

It is an open problem whether or not interpolating sequences for a
(even complete) Nevanlinna-Pick kernel are characterized by the
necessary conditions: separation and the Carleson condition. That the
answer is YES has been conjectured both by Seip and by Agler and
McCarthy.

The above proof of Böe uses a heavy hammer at the end by taking
absolute values inside the sum and requiring the technical property of

the Grammian
hDfkzm ,fkznEi∞

m,n=
.

A recently posted result on the arxiv by Chalendar, Fricain and
Timotin shows that a YES answer to this problem implies the
Feichtinger Conjecture (every Bessel sequence is a �nite union of
Riesz sequences) for complete Nevanlinna-Pick kernels, which speaks
to the di¢ culty of this problem.
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Part 4

Bilinear Hankel forms
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Hankel operators

Hankel operators on the Hardy space of the disk, H2 (D) , can be
studied as linear operators from H2 (D) to its dual space, as
conjugate linear operators from H2 (D) to itself, or, in the viewpoint
we will take here, as bilinear functionals on H2 (D)�H2 (D).

In that formulation, given a holomorphic symbol function b we
consider the bilinear Hankel form, de�ned initially for f , g in P (D) ,
the space of polynomials, by

Sb (f , g) := hfg , biH 2 .

The norm of Sb is

kSbkH 2�H 2 = sup fjSb (f , g)j : kf kH 2 = kgkH 2 = 1g .
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Nehari�s theorem on the Hardy space

Nehari�s classical criterion for the boundedness of Sb on the Hardy
space H2 can be cast in modern language using Fe¤erman�s duality
theorem.

We say a positive measure µ on the disk is a Carleson measure for H2

if

kµkCM (H 2) := sup
�Z

D
jf j2 dµ : kf kH 2 = 1

�
< ∞

and that b is in the space BMO if

kbkBMO := jb(0)j+



��b0(z)��2 (1� jz j2)dA




CM (H 2)
< ∞.

Nehari�s theorem is the equivalence kSbkH 2�H 2 � kbkBMO .
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Dirichlet Hankel operators

Our main result is an analogous statement for a similar class of
bilinear forms on the Dirichlet space D (D) = D. Recall that D is the
Hilbert space of holomorphic functions on the disk with inner product

hf , giD = f (0)g(0) +
Z

D
f 0(z)g 0(z) dA,

and normed by kf k2D = hf , f iD.

We consider a holomorphic symbol function b and de�ne the
associated bilinear form, initially for f , g 2 P (D) , by

Tb (f , g) := hfg , biD .

The norm of Tb is

kTbkD�D = sup fjTb (f , g)j : kf kD = kgkD = 1g .
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The main theorem

We say a positive measure µ on the disk is a Carleson measure for D if

kµkCM (D) := sup
�Z

D
jf j2 dµ : kf kD = 1

�
< ∞,

and that the holomorphic function b is in the space X if

kbkX := jb(0)j+



��b0(z)��2 dA




CM (D)
< ∞.

Our main result is

Theorem

kTbkD�D � kbkX
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Outline of the proof

It is easy to see that kTbkD�D � C kbkX .

To obtain the other inequality we must use the boundedness of Tb to
show jb0j2 dA is a Carleson measure.
Analysis of the capacity theoretic characterization of Carleson
measures due to Stegenga allows us to focus attention on a certain
set V in D and the relative sizes of

R
V jb0j

2 and the capacity of the
set V̄ \ ∂D.
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Outline of the proof 2

To compare these quantities we construct Vexp, an expanded version
of the set V which satis�es two con�icting conditions.

First, Vexp is not much larger than V , either when measured byR
Vexp

jb0j2 or by the capacity of the Vexp \ ∂D.

Second, DnVexp is well separated from V in a way that allows the
interaction of quantities supported on the two sets to be controlled.
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Outline of the proof 3

Once this is done we can construct a function ΦV 2 D which is
approximately one on V and which has Φ0

V approximately supported
on DnVexp. Using ΦV we build functions f and g with the property
that

jTb(f , g)j =
Z
V

��b0��2 + error.

The technical estimates on ΦV allow us to show that the error term
is small and the boundedness of Tb then gives the required control ofR
V jb0j

2.
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The Easy Direction of the proof

Suppose that µb is a D-Carleson measure. For f , g 2 P (D), we
have that jTb (f , g)j is at most������f (0) g (0) b (0) +

Z
D

�
f 0 (z) g (z) + f (z) g 0 (z)

�
b0 (z)dA

������
� j(fgb)(0)j+ kf kD

0@Z
D

jg j2 dµb

1A 1
2

+ kgkD

0@Z
D

jf j2 dµb

1A 1
2

� C
�
jb (0)j+ kµbkD�Carleson

�
kf kD kgkD = C kbkX kf kD kgkD .
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Preliminaries of the Hard Direction

Setting g = 1 we obtain

jhf , biD j = jTb (f , 1)j � kTbk kf kD k1kD

for all polynomials f 2 P (D), which shows that b 2 D and

kbkD � C kTbk . (17)

Let Im be the midpoint of I and z(I ) =
�
1� jI j

2π

�
z be the associated

index point in the disk. Let I (z) to be the interval such that
z(I (z)) = z . We set T (I ), the tent over I to be the convex hull of I
and z(I ) and let T (z) = T (z (I )) � T (I ). More generally, for any
open subset H of the circle T, we set T (H) = [I�HT (I ), called the
tent region of H in the disk D.
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Preliminaries of the Hard Direction 2

To complete the proof we will show that µb = jb0j
2 dA is a

D-Carleson measure by verifying a condition due to Stegenga: For
any �nite collection of disjoint arcs fIjgNj=1 in the circle T we have

µb

�
�
[
N

j=1T (Ij )
�
� C CapD

�
�
[
N

j=1Ij

�
, (18)

where for open G � T in any quadrant Q,

CapQ G = inf
n
kψk2D : ψ (0) = 0,Re ψ (z) � 1 for z 2 G

o
, (19)

and in general, CapD (G ) � ∑ CapQ (G \Q), where the sum is over
the four quadrants.

We have equivalence with the logarithmic capacity Caplog:

CapD (G ) � Caplog (G ) , G � T.

In our proof we use functions for which equality in a tree version of
(19) is approximately attained.
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Disk blowup and capacity

For I an open arc and 0 < ρ � 1, let I ρ be the arc concentric with I
having length jI jρ.

De�nition

For G open in T let G ρ
D � [I�GT (I ρ) be the disk blowup (of order ρ) of

the open set G � T. The important feature of the disk blowup is that it
achieves a good geometric separation between G ρ

D and T (G ) = G 0D.

Lemma

Let G be an open subset of the circle T. Then

jz � w j �
�
1� jw j2

�ρ
, w 2 T (G ) and z /2 G ρ

D.

The inequality follows from G ρ
D = [I�GT (I ρ) and

T (I ρ) �
n
z : jz � z (I )j < 2

�
1� jz (I )j2

�ρo
.
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The key asymptotic capacity estimate

In addition to good geometric separation, the capacity of disk blowup
is controlled by an inequality of Bishop:

CapD ([I�G I ρ) � CρCapDG . (20)

We do not know if the constant Cρ in (20) satis�es the asymptotic
estimate,

lim
ρ!1�

Cρ = 1. (21)

It turns out that an asymptotic inequality such as (21) is the key to

our proof below, in which we require that µb

�
G β

D n T (G )
�
is small

for an appropriate "extremal" set G .

While (21) remains in doubt for disk blowups, it turns out to hold for
certain "tree" blowups to which we now turn.
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our proof below, in which we require that µb

�
G β

D n T (G )
�
is small

for an appropriate "extremal" set G .

While (21) remains in doubt for disk blowups, it turns out to hold for
certain "tree" blowups to which we now turn.
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Tree capacities

Consider a dyadic tree T together with the following notation.

If x is an element of the tree T , x�1 denotes its immediate
predecessor in T .

If z is an element of the sequence Z � T , Pz denotes its predecessor
in Z : Pz 2 Z is the maximum element of Z \ [o, z) (we assume
o 2 Z for convenience).
Let CapT (E ) be the tree capacity of E given by

inf

(
∑

κ2T
4f (κ)2 : f (o) = 0, f (β) � 1 for β 2 E

)
. (22)
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Tree condensers

More generally, the capacity CapT (E ,F ) of the pair (E ,F ),
commonly known as a condenser (E ,F ), is given by

inf

(
∑

κ2T
4f (κ)2 : f (α) � 0 for α 2 E , f (β) � 1 for β 2 F

)
.

(23)

We say that S � T is a stopping time if every pair of distinct points
in S are incomparable in T .

Given stopping times E ,F � T we say that E � F if for every x 2 E
there is y 2 F with y < x .
For stopping times E � F denote by G (E ,F ) the union of all those
geodesics connecting a point of x 2 E to the point y 2 F lying above
it, i.e. y < x .
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Harmonic functions on trees

Let Ω � T . A point x 2 T is in the interior of Ω if
x , x�1, x+, x� 2 Ω. A function H is harmonic in Ω if

H(x) =
1
3
[H(x�1) +H(x+) +H(x�)] (24)

for every point x which is interior in Ω.

Let Ih (x) = ∑y2[o ,x ] h (y). If H = Ih is harmonic in Ω, then we have
the martingale property,

h(x) = h(x+) + h(x�), (25)

whenever x is in the interior of Ω.
Here is the main theorem on condensers in trees.
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Harmonic theorem

Theorem

Let T be a dyadic tree and suppose that E and F are subsets as above.

1 There is an extremal function H = Ih such that Cap(E ,F ) = khk2`2 .
2 The function H is harmonic on T n (E [ F ).
3 If S is a stopping time in T , then ∑κ2S jh (κ)j � 2Cap(E ,F ).
4 The function h is positive on G (E ,F ), and zero elsewhere.
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Stopping time blowups

An analogue of the disk blowup in trees is the stopping time blowup.

De�nition

Given 0 � ρ � 1 and a stopping time W in a tree T , de�ne the stopping
time blowup W ρ

T of W in T as the set of minimal tree elements in
fRρκ : κ 2 Tθg, where Rρκ denotes the unique element in the tree T
satisfying

o � Rρκ � κ, (26)

ρd (κ) � d (Rρκ) < ρd (κ) + 1.

Clearly W ρ
T is a stopping time in T . Note that R

1κ = κ. The
element Rρκ can be thought of as the "ρth root of κ" since in the
Bergman tree model T , jRρκj = 2�d (R ρκ) � 2�ρd (κ) = jκjρ.
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Rotated tree capacities

Now let T be the standard Bergman tree in D. Let Tθ be the
rotation of the tree T by the angle θ, and let CapTθ

be the tree
capacity associated with Tθ as in (22), and extend the de�nition to
open subsets G of T by de�ning CapTθ

(G ) to be

inf

(
∑

κ2Tθ

4f (κ)2 : f (o) = 0, f (β) � 1 for β 2 Tθ, I (β) � G
)
.

This is consistent with the de�nition of tree capacity of a stopping
time W in Tθ in the sense that if G = [ fI (κ) : κ 2 W g, we have

CapTθ
(W ) = CapTθ

(fog ,W ) = CapTθ
(G ) .

When the angle θ is not important, we will simply write T with the
understanding that all results have analogues with Tθ in place of T .
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Stopping times, arcs and tents

There are natural bijections between the following three sets of
objects:

stopping times W in the tree T ;
T -open subsets G of the circle T;

T -tent regions Γ of the disk D.

The bijections are given as follows. For W a stopping time in T , its
associated T -open set in T is the T -shadow
ST (W ) = [ fI (κ) : κ 2 W g of W on the circle (this also de�nes
the collection of T -open sets). The associated T -tent region in D is
TT (W ) = [ fT (I (κ)) : κ 2 W g (this also de�nes the collection of
T -tent regions).
Note that for any open subset E of the circle T, there is a unique
T -open set G � E such that E n G is at most countable. We often
informally identify the open sets E and G .
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Condenser di¢ culty

In order to simplify notation, we identify a stopping time W = WT
with its associated T -shadow on the circle and its T -tent region in
the disk.

We now investigate the tree analogue G ρ
T of the disk blowup G

ρ
D of

an open subset G of the circle T. According to the natural bijections
above, we can view G ρ

T as a stopping time, an open subset of the
circle, or as a T -tent region in the disk.
It turns out that if W is a stopping time for T and Z = W ρ

T is the
stopping time blowup of W , then there is a good estimate for the tree
capacity of Z , namely CapT (fog ,Z ) < 1

ρCapT (fog ,W ), but no
good condenser estimate of the form,

CapT (Z ,W ) < CρCapT (fog ,W ) .
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Capacitary blowup

Thus the stopping time blowup does not lead to a useful capacity estimate
for the condenser CapT

�
W ρ
T ,W

�
. Instead we use a method based on a

capacitary extremal and a comparison principle. Let W be a stopping time
in T . By Theorem 11, there is a unique extremal function H = Ih such
that

H (o) = 0, (27)

H (x) = 1 for x 2 W ,
CapTW = khk2`2 ,

De�nition

Given a stopping time W in T , the corresponding extremal H satisfying
(27), and 0 < ρ < 1, de�ne the capacitary blowup dW ρ

T (stopping time) of
W by

dW ρ
T = ft 2 G (fog ,W ) : H (t) � ρ and H (x) � ρ for x < tg .
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Capacitary blowup estimates

The capacitary blowup satis�es an estimate with constant
asymptotically equal to 1.

Lemma

CapT
dW ρ
T � 1

ρ2
CapTW .

Proof: Let Hρ = 1
ρH and h

ρ = 1
ρh where h = 4H and H is the

extremal for W in (27). Then Hρ is a candidate for the in�mum in

the de�nition of capacity of dW ρ
T , and hence by the "comparison

principle",

CapT
dW ρ
T � kh

ρk2`2 =
�
1
ρ

�2
khk2`2 =

1
ρ2
CapTW .
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Tree separation

We also have good tree separation inherited from the stopping time
blowup W ρ

T .

Lemma

W ρ
T �

dW ρ
T as open subsets of the circle or as T -tent regions in the disk.

Consequently, CapTW
ρ
T � 1

ρ2
CapTW.

Proof: The restriction of h to a geodesic is a concave function of
distance from the root, and so if o < z < w 2 W , then

h (z) �
�
1� d (z)

d (w)

�
h (o) +

d (z)
d (w)

h (w) =
d (z)
d (w)

� ρ, z 2dW ρ
T ,

and this proves W ρ
T �

dW ρ
T . The inequality now follows from Lemma

14.
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A good condenser estimate

The capacitary blowup dW ρ
T , unlike the stopping time blowup W

ρ
T ,

does indeed satisfy a good condenser inequality. It su¢ ces to obtain a
condenser inequality only for those W with small capacity.

Lemma

CapT
�
W ,dW ρ

T

�
� 4

(1�ρ)2
CapTW provided CapTW � 1

4 (1� ρ)2.

Proof: Let H be the extremal for W in (27). For t 2dW ρ
T we have by

our assumption,

h (t) � khk`2 �
p
CapTW � 1

2
(1� ρ) ,

and so

H (t) = H (At) + h (t) � ρ+
1
2
(1� ρ) =

1+ ρ

2
.
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Condensers continued

If we de�ne eH (t) = 2
1�ρ

n
H (t)� 1+ρ

2

o
, then eH � 0 on dW ρ

T andeH = 1 on W . Thus eH is a candidate for the capacity of the
condenser and so by the "comparison principle",

CapT
�
W ,dW ρ

T

�
�




4eH


2
`2(G(W ρ

T ,W ))
�



4eH


2

`2(T1)

=

�
2

1� ρ

�2
khk2`2(T1) =

4

(1� ρ)2
CapTW .

The disk blowups have good geometric separation properties (useful
when estimating Bergman type kernels) and the capacitary blowup
has a good condenser estimate (useful in constructing holomorphic
extremals).
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Holomorphic Approximate Extremals and Capacity
Estimates
De�nition of the holomorphic approximation

Now we de�ne a holomorphic approximation Φ to the function H = Ih
on T1 constructed in Proposition 11 using a parameter s > �1.

De�ne an ameliorating factor by ϕκ (z) =
�
1�jκj2
1�κz

�1+s
.

De�ne a holomorphic approximation by

Φ (z) = ∑
κ2T1

h (κ) ϕκ (z) = ∑
κ2T1

h (κ)

 
1� jκj2

1� κz

!1+s
. (28)
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The di¤erence

Note that

∑
κ2T1

h (κ) I δκ (z) = I

 
∑

κ2T1
h (κ) δκ

!
(z) = Ih (z) = H (z) ,

and so the di¤erence of the holomorphic approximation Φ and the
extremal H is

Φ (z)�H (z) = ∑
κ2T1

h (κ) fϕκ � I δκg (z) . (29)
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Holomorphic Approximate Extremals and Capacity
Estimates
The projection operator

We will also need to write Φ in terms of the projection operator

Γsh (z) =
Z

D
h (ζ)

�
1� jζj2

�s
�
1� ζz

�1+s dA. (30)

Namely, Φ = Γsg where

g (ζ) = ∑
κ2T1

h (κ)
1
jBκj

�
1� ζκ

�1+s�
1� jζj2

�s χBκ
(ζ) , (31)

and Bκ is the Euclidean ball centered at κ with radius c (1� jκj) for
a su¢ ciently small positive constant c to be chosen later.

The function Φ satis�es the following estimates.
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Holomorphic Approximate Extremals and Capacity
Estimates

Theorem

Let E = fwkgk be contained in a quadrant Q, and F = fw �k gk where
F = cE ρ

T . Suppose CapT (E ,F ) is su¢ ciently small, z 2 D and s > �1.
Then we have8>><>>:

jΦ (z)�Φ (wk )j � CCapT (E ,F ) , z 2 T (wk )
Re Φ (wk ) � c > 0, k � 1
jΦ (wk )j � C , k � 1
jΦ (z)j � CCapT (E ,F ) , z /2 F

. (32)

Furthermore, if s > � 1
2 then Φ = Γsg where

jg (ζ)j2 dA � C CapT (E ,F ) . (33)
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Proof of the Holomorphic Approximation Theorem

Corollary

For s > 1
2 ,

kΦk2D �
Z

D
jg (ζ)j2 dA � C CapT (E ,F ) . (34)

Proof of the theorem: From (29) we have

jΦ (z)�H (z)j � ∑
κ2[o ,z ]

jh (κ) fϕκ (z)� 1gj+ ∑
κ/2[o ,z ]

jh (κ) ϕκ (z)j

= I (z) + II (z) .

We also have that h is nonnegative and supported in V γ
G n V α

G . We �rst
show that

II (z) � ∑
κ/2[o ,z ]

h (κ)

�����1� jκj21� κz

�����
1+s

� CCap (E ,F ) .
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Proof of the HA Theorem 2

For A > 1 let

Ωk =

(
κ 2 T : A�k�1 <

�����1� jκj21� κz

����� � A�k
)
.

If we choose A su¢ ciently close to 1, then for every k the set Ωk is a
union of two disjoint stopping times for T .
Now we use the stopping time property 3 in Theorem 11 to obtain

∑
κ2Ωk

h (κ) � CCapT (E ,F ) , k � 0.

Altogether we then have

II (z) �
∞

∑
k=0

∑
κ2Ωk

h (κ)A�k (1+s) � CsCapT (E ,F ) .
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Proof of the HA Theorem 3

If z 2 D n F , then I (z) = 0 and H (z) = 0 and we have

jΦ (z)j = jΦ (z)�H (z)j � II (z) � CsCapT (E ,F ) ,

which is the fourth line in (32).

If z 2 T (wk ), then for κ /2 [o,wk ] we have

jϕκ (wk )j � C jϕκ (z)j ,

and for κ 2 [o, z ] we have

jϕκ (z)� ϕκ (wk )j =

������
 
1� jκj2

1� κz

!1+s
�
 
1� jκj2

1� κwk

!1+s ������
� Cs

jz � wk j
1� jκj2

.
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Proof of the HA Theorem 4

Thus for z 2 T (w α
k ),

jΦ (z)�Φ (wk )j � ∑
κ2[o ,w α

k ]

h (κ) jϕκ (z)� ϕκ (wk )j+ C ∑
κ/2[o ,z ]

h (κ) jϕκ (z)j

� Cs ∑
κ2[o ,w α

k ]

h (κ)
jz � wk j
1� jκj2

+ CII (z)

� CsCapT (E ,F ) ,

since h (κ) � C CapT (E ,F ) and ∑κ2[o ,wk ]
1

1�jκj2 �
1

1�jwk j2
. This proves

the �rst line in (32).
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Proof of the HA Theorem 5

Moreover, we note that for s = 0 and κ 2 [o,wk ],

Re ϕκ (wk ) = Re
1� jκj2

1� κwk
= Re

1� jκj2

j1� κwk j2
(1� κwk ) � c > 0.

A similar result holds for s > �1 provided the Bergman tree T is
constructed su¢ ciently thin depending on s.

It then follows from ∑κ2[o ,wk ] h (κ) = 1 that

Re Φ (wk ) = ∑
κ2[o ,wk ]

h (κ)Re ϕκ (wk ) + ∑
κ/2[o ,wk ]

h (κ)Re ϕκ (wk )

� c ∑
κ2[o ,wk ]

h (κ)� C CapT (E ,F ) � c 0 > 0.
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Proof of the HA Theorem 6

We trivially have

jΦ (wk )j � I (z) + II (z) � C ∑
κ2[o ,wk ]

h (κ) + C CapT (E ,F ) � C ,

and this completes the proof of (32).

Finally we prove (33). From property 1 of Theorem 11 we obtain

Z
D
jg (ζ)j2 dA =

Z
D

������∑κ2T h (κ) 1
jBκj

�
1� ζκ

�1+s�
1� jζj2

�s χBκ
(ζ)

������
2

dA

= ∑
κ2T

jh (κ)j2 1

jBκj2
Z
Bκ

��1� ζκ
��2+2s�

1� jζj2
�2s dA

� ∑
κ2T

jh (κ)j2 � CapT (E ,F ) .
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Comparison of tree and disk capacities

We can now compare the tree and disk capacities.

Corollary

Let G be a �nite union of arcs in the circle T. Then

CapT (G ) � CapD (G ) , (35)

where CapD denotes the disk capacity.

Proof: We may suppose that G � Q\T for some quadrant Q. The
inequality / in (35) follows easily from Theorem 17 which provides a
candidate for testing the Stegenga capacity of G .

We take F = fog and E = G in Theorem 17.

Let c ,C be the constants in Theorem 17, and suppose that
Cap (E ,F ) � c

3C
. Set Ψ (z) = 3

c (Φ (z)�Φ (0)).
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Proof of comparison 2

Then Ψ (0) = 0,

Re Ψ (z) =
3
c
fRe Φ (z)� Re Φ (0)g

� 3
c
fc � 2C Cap (E ,F )g � 1, z 2 G ,

and by (34) we have

kΨk2D =
�
3
c

�2
kΦk2D �

�
3
c

�2
C Cap (E ,F ) .

Continuing with Lemma 16 we obtain that for G � T,

kΨk2D �
�
3
c

�2
C CapT (E ,F ) � C CapT E = C CapT G .
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Proof of comparison 3

Conversely, to obtain the inequality ' in (35), let ψ 2 D be an
extremal function for CapDG .

De�ne h (o) = 0 and

h (κ) = (1� jκj)
Z
Q (κ)

��ψ0 (z)�� dλ (z) , κ 2 T n fog ,

where Qh (κ) is the hyperbolic cube corresponding to κ in T , and
dλ (z) is invariant measure on the disk D.

One easily veri�es that Ih (o) = 0, and

kIhk2B2(T1) = khk2`2(T ) = ∑
κ2T1

(1� jκj)2
�Z

Q (κ)

��ψ0 (z)�� dλ (z)
�2

� C ∑
κ2T1

Z
Q (κ)

��ψ0 (z)�� dA = C kψk2D .
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Proof of comparison 4

Moreover,

Ih (β) = ∑
κ2[o ,β]

h (κ) � Re ψ (β) � c > 0, for S (β) � G ,

Indeed, if Bh (κ,R) is the hyperbolic ball of radius R about κ, then
for R large enough,

jψ (β)j � ∑
κ2[o ,β]

��ψ (κ)� ψ
�
κ�1
���

� ∑
κ2[o ,β]

���� 1
jBh (κ, 1)j

Z
Bh(κ,1)

ψ (z) dA� 1
jBh (κ�1, 1)j

Z
Bh(κ�1,1)

ψ (z) dA

����
� C ∑

κ2[o ,β]

1� jκj2

jBh (κ, 1)j

Z
Bh(κ,R )

��ψ0 (z)�� dA
� C ∑

κ2[o ,β]

�
1� jκj2

� Z
Q (κ)

��ψ0 (z)�� dλ (z) = C ∑
κ2[o ,β]

h (κ) ,

where the �nal inequality is the submean value property for jψ0 (z)j.
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End of proof of comparison

It follows that

CapT G = inf
n
kHk2B2(T ) : H (0) = 0,ReH (κ) � 1 if S (κ) � G

o
�





1c Ih




2
B2(T )

� C
c2
kψk2D =

C
c2
CapDG .

(Institute) Interpolating sequences and bilinear Hankel forms for the classical Dirichlet spaceJune 20, 2011 104 / 149



Asymptotic capacity estimate on the disk

A result of Bishop says that

CapD

�
[Nj=1I

ρ
j

�
� CρCapD

�
[Nj=1Ij

�
, (36)

for a constant Cρ depending only on 0 < ρ < 1.

In the next Corollary we use the asymptotic versions of this that hold
for tree capacities, i.e Cρ & 1 as ρ % 1, given by Lemma 14.

Let dθ be Lebesgue measure on T normalized to have mass one.
Abbreviate CapTθ

by Capθ, and let Tθ (E ) be the Tθ-tent region
corresponding to an open subset E of the circle T. Recall that
T (E ) = [I�ET (I ). Now de�ne M by

M := sup
E open �T

R
T

µb (Tθ (E )) dθR
T
Capθ (E ) dθ

. (37)
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Proof of the Carleson measure estimate

The quantity M is comparable to the Carleson measure norm squared.

Corollary

With M as in (37) we have kµbk
2
D�Carleson � M.

Proof: Using Corollary 19 and Tθ (E ) � T (E ), we have

M � C sup
E open �T

R
T

µb (T (E )) dθR
T
CapD (E ) dθ

= C sup
E open �T

µb (T (E ))
CapD (E )

� kµbk
2
D�Carleson ,

where the �nal comparison is Stegenga�s theorem.
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Proof of the CE 2

Conversely, one can verify using the argument in (40) below that for
0 < ρ < 1,

µb (T (E )) � C
Z

T
µb
�
Tθ

�
E ρ

D

��
dθ

� CM
Z

T
Capθ

�
E ρ

D

�
dθ

� CMCapD

�
E ρ

D

�
� CMCapD (E ) ,

where the third line uses (35) with E ρ
D and T1 (θ) in place of G and

T1, and the �nal inequality follows from (36).

Thus from Stegenga�s theorem we obtain

kµbk
2
D�Carleson � sup

E open �T

µb (T (E ))
CapD (E )

� CM.
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The crucial step in the proof

Given 0 < δ < 1, let G be an open set in T such thatR
T

µb (Tθ (G )) dθR
T
Capθ (G ) dθ

� δM (38)

We need to know that µb(V
β
G n VG ) is small compared to µb (VG ).

This is the crucial step of the proof and is the main reason we
introduced tree capacities - namely so that the asymptotic capacity
estimate holds in Lemma 15.

Theorem

Given ε > 0 we can choose δ = δ(ε) < 1 in (38) and β = β(ε) < 1 so that
for any G satisfying (38), we have with V β

G = G
β
D and VG = G 1D = T (G ),

µb(V
β
G n VG ) � εµb (VG ) , (39)
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Proof of the crucial step

Let G ρ (θ) = G ρ
Tθ
and Capθ = CapTθ

. Lemma 15 shows that
Capθ (G ρ (θ)) � ρ�2Capθ (G ), for 0 � θ < 2π, 0 < ρ < 1, and if we
integrate on T we obtainZ

T
Capθ (G

ρ (θ)) dσ � 1
ρ2

Z
T
Capθ (G ) dθ.

From (37) and (38) we thus haveZ
T

µb (Tθ (G
ρ (θ))) dσ � M

Z
T
Capθ (G

ρ (θ)) dθ

� M
1
ρ2

Z
T
Capθ (G ) dθ

� 1
δρ2

Z
T

µb (Tθ (G )) dθ.
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Proof of the crucial step 2

It follows that Z
T

µb (Tθ (G
ρ (θ)) n Tθ (G )) dθ

=
Z

T
µb (Tθ (G

ρ (θ))) dσ�
Z

T
µb (Tθ (G )) dθ

�
�
1

δρ2
� 1
� Z

T
µb (Tθ (G )) dθ.
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Proof of the crucial step 3

Now with η = ρ+1
2 halfway between ρ and 1,Z

T
µb (Tθ (G

ρ (θ)) n Tθ (G )) dθ =
Z

T

Z
Tθ(G ρ(θ))nTθ(G )

dµb (z) dθ (40)

�
Z

T

Z
Tθ(G ρ(θ))nT (G )

dµb (z) dθ =
Z

D

�
1
2π

Z
fθ:z2Tθ(G ρ(θ))nT (G )g

dθ

�
dµb (z)

� 1
2

Z
T (G η

D)nT (G )
dµb (z) ,

since every z 2 T
�
G η

D

�
lies in Tθ (G ρ (θ)) for at least half of the θ�s

in [0, 2π).

We may assume above that the components of G ρ
D have small length

since otherwise we trivially have
R

T
CapT (θ) (G ) dσ � c > 0 and so

then

M � 1
c

Z
dµb �

1
c
kbk2D �

C
c
kTbk2 . (41)
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Proof of the crucial step 4

Combining the above inequalities and using ρ = 2η � 1, 12 � ρ < 1,
and choosing δ = η, we obtain

µb
�
T
�
G η

D

�
n T (G )

�
� 2

�
1

δρ2
� 1
� Z

T
µb (Tθ (G )) dθ

= 2

 
1

η (2η � 1)2
� 1
! Z

T
µb (Tθ (G )) dθ

� C (1� η)
Z

T
µb (Tθ (G )) dθ,

for 34 � η < 1.

Recalling V η
G = T

�
G η

D

�
and VG = T (G ) this becomes

µb
�
V η
G n VG

�
� C (1� η)

Z
T

µb (Tθ (G )) dθ � C (1� η) µb (VG ) ,

3/4 � η < 1, since Tθ (G ) � T (G ) = VG for all θ. Thus given
ε > 0 it is possible to select δ and β so that (39) holds.
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Schur Estimates and a Bilinear Operator on Trees
The Schur theorem

Theorem

Let (X , µ), (Y , ν) and (Z ,ω) be measure spaces and H (x , y , z) be a
nonnegative measurable function on X � Y � Z. De�ne

T (f , g) (x) =
Z
Y�Z

H (x , y , z) f (y) dν (y) g (z) dω (z) , x 2 X ,

at least initially for nonnegative functions f , g. Then if 1 < p < ∞, T is
bounded from Lp (ν)� Lp (ω) to Lp (µ) if there are positive functions h,
k and m on X , Y and Z respectively such that

(Institute) Interpolating sequences and bilinear Hankel forms for the classical Dirichlet spaceJune 20, 2011 113 / 149



The Schur theorem continued

TheoremZ
Y�Z

H (x , y , z) k (y)p
0
m (z)p

0
dν (y) dω (z) � (Ah (x))p

0
,

for µ-a.e. x 2 X, andZ
X
H (x , y , z) h (x)p dµ (x) � (Bk (y)m (z))p ,

for ν�ω-a.e. (y , z) 2 Y � Z. Moreover, kTkoperator � AB.
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Proof of Schur�s Theorem

Z
X
jTf (x)jp dµ (x)

�
Z
X

�Z
Y�Z

H (x , y , z) k (y)p
0
m (z)p

0
dν (y) dω (z)

�p/p 0

�
�Z

Y�Z
H (x , y , z)

�
f (y)
k (y)

�p
dν (y)

�
g (z)
m (z)

�p
dω (z)

�
dµ (x)

� Ap
Z
Y�Z

�Z
X
H (x , y , z) h (x)p dµ (x)

��
f (y)
k (y)

�p
dν (y)

�
g (z)
m (z)

�p
dω (z)

� ApBp
Z
Y�Z

k (y)p m (z)p
�
f (y)
k (y)

�p
dν (y)

�
g (z)
m (z)

�p
dω (z)

= (AB)p
Z
Y
f (y)p dν (y)

Z
Z
g (z)p dω (z) .
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Integral estimates

Schur�s Theorem can be used along with the estimates

Z
D

�
1� jw j2

�t
j1� wz j2+t+c

dw �

8<:
Ct if c < 0, t > �1

�Ct log(1� jz j2) if c = 0, t > �1
Ct (1� jz j2)�c if c > 0, t > �1

, .

(42)
to prove the following Corollary which we will use later.
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Lebesgue boundedness

De�ne

Tf (z) = (1� jz j2)a
Z

D

(1� jw j2)b

(1� wz)2+a+b
f (w) dw ,

Sf (z) = (1� jz j2)a
Z

D

(1� jw j2)b

j1� wz j2+a+b
f (w) dw .

Corollary

Suppose that t 2 R and 1 � p < ∞ and set

dνt (z) = (1� jz j2)tdA.

Then T is bounded on Lp (D, dνt ) if and only if S is bounded on
Lp (D, dνt ) if and only if

�pa < t + 1 < p (b+ 1) . (43)
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A Bilinear Lemma

We now apply Theorem 22 to prove a lemma about a bilinear operator
mapping `2 (A)� `2 (B) to L2 (D) where A and B are subsets of
T which are well separated.

Lemma

Suppose A and B are subsets of T , h 2 `2 (A) and k 2 `2 (B) , and
1
2 < α < 1. Suppose further that A and B satisfy the separation condition:
8κ 2 A, γ 2 B we have

jκ � γj � (1� jγj2)α. (44)

Then the bilinear map of (h, k) to functions on the disk given by

T (h, b�) (z) =

 
∑

κ2A
h (κ)

(1� jκj2)1+s

j1� κz j2+s

! 
∑

γ2B
b� (γ)

(1� jγj2)1+s

j1� γz j1+s

!

is bounded from `2 (A)� `2 (B) to L2 (D).
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Proof of the Bilinear Lemma

We will verify the hypotheses of the previous theorem. The kernel
function here is

H (z , κ,γ) =
(1� jκj2)1+s

j1� κz j2+s
(1� jγj2)1+s

j1� γz j1+s
, z 2 D, κ 2 A,γ 2 B,

with Lebesgue measure on D, and counting measure on A and B.

We will take as Schur functions

h (z) =
�
1� jz j2

�� 1
4
, k (κ) =

�
1� jκj2

� 1
4
and m (γ) = (1�jγj2) ε

2 ,

on D, A and B respectively, where ε > 0 will be chosen su¢ ciently
small later.
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Proof of the BL 2

We must then verify

∑
κ2A

∑
γ2B

�
1� jκj2

� 3
2+s

j1� κz j2+s

�
1� jγj2

�1+ε+s

j1� γz j1+s
� A2

�
1� jz j2

�� 1
2
, (45)

for z 2 D, and

Z
D

�
1� jκj2

�1+s
j1� κz j2+s

�
1� jγj2

�1+s
j1� γz j1+s

�
1� jz j2

�� 1
2
dA (46)

� B2
�
1� jκj2

� 1
2
�
1� jγj2

�ε
,

for κ 2 A and γ 2 B.
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Proof of the BL 3

To prove (45) we write

∑
κ2A

∑
γ2B

�
1� jκj2

� 3
2+s

j1� κz j2+s

�
1� jγj2

�1+ε+s

j1� γz j1+s

=

0B@∑
κ2A

�
1� jκj2

� 3
2+s

j1� κz j2+s

1CA
0B@∑

γ2B

�
1� jγj2

�1+ε+s

j1� γz j1+s

1CA .

Then from (42) we obtain (45):

∑
κ2A

�
1� jκj2

� 3
2+s

j1� κz j2+s
� C

Z
D

�
1� jw j2

�� 1
2+s

j1� wz j2+s
dw � C

�
1� jz j2

�� 1
2
,

∑
γ2B

�
1� jγj2

�1+ε+s

j1� γz j1+s
� C

Z
ζ2VG

�
1� jζj2

��1+ε+s

��1� ζz
��1+s dA � C .
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D

�
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�� 1
2
,

∑
γ2B

�
1� jγj2

�1+ε+s

j1� γz j1+s
� C

Z
ζ2VG

�
1� jζj2

��1+ε+s

��1� ζz
��1+s dA � C .
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Proof of the BL 4

The proof of (46) will use separation (44).

We have

Z
D

�
1� jκj2

�1+s
j1� κz j2+s

�
1� jγj2

�1+s
j1� γz j1+s

�
1� jz j2

�� 1
2
dA

=
Z

jz�γ�j�1�jγj2
+

Z
1�jγj2�jz�γ�j� 1

2 jκ�γj

+
Z

jz�κ�j�1�jκj2
+

Z
1�jκj2�jz�κ�j� 1

2 jκ�γj

+
Z

jz�γ�j,jz�κ�j�jκ�γj

...dA

= I + II + III + IV + V .
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Proof of the BL 5

By (44) jκ � γj �
�
1� jγj2

�α
and so

I �

�
1� jκj2

�1+s
jκ � γj2+s

Z
jz�γ�j�1�jγj2

�
1� jz j2

�� 1
2
dA

�

�
1� jκj2

�1+s �
1� jγj2

� 3
2

jκ � γj2+s
� C

�
1� jκj2

� 1
2
�
1� jγj2

� 3
2 (1�α)

,
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Proof of the BL 6

and similarly

II �

�
1� jκj2

�1+s �
1� jγj2

�1+s
jκ � γj2+s

Z
1�jγj2�jz�γ�j� 1

2 jκ�γj

�
1� jz j2

�� 1
2

jz � γ�j1+s
dA

�

�
1� jκj2

�1+s �
1� jγj2

�1+s
jκ � γj2+s

�
1� jγj2

� 1
2�s

=

�
1� jκj2

�1+s �
1� jγj2

� 3
2

jκ � γj2+s
� C

�
1� jκj2

� 1
2
�
1� jγj2

� 3
2 (1�α)

.
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Proof of the BL 7

Continuing to use jκ � γj �
�
1� jγj2

�α
we obtain

III �

�
1� jκj2

� 1
2
�
1� jγj2

�1+s
jκ � γj1+s

� C
�
1� jκj2

� 1
2
�
1� jγj2

�(1+s)(1�α)
,

and similarly,

IV � C
�
1� jκj2

� 1
2
�
1� jγj2

�ε
,

for some ε > 0.
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Proof of the BL 8

Finally

V �
Z

jz�γ�j,jz�κ�j�jκ�γj

�
1� jκj2

�1+s
jz � κ�j2+s

�
1� jγj2

�1+s
jz � γ�j1+s

�
1� jz j2

�� 1
2
dA

�

�
1� jκj2

�1+s �
1� jγj2

�1+s
jκ � γj

3
2+2s

� C
�
1� jκj2

� 1
2
�
1� jγj2

�(1+s)(1�α)
.
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Proof of the Main Result: discussion

To complete the proof of our main result, we will show that µb is a
D-Carleson measure by verifying Stegenga�s condition (18); that is,
we will show that for any �nite collection of disjoint arcs fIjgNj=1 in
the circle T we have

µb

�
�
[
N

j=1T (Ij )
�
� C CapD

�
�
[
N

j=1Ij

�
.

In fact we will see that it su¢ ces to verify this for the sets

G =
�
[
N

j=1Ij described in (38) that are near extremals for (37). We
will prove the inequality

µb (VG ) � C kTbk
2 CapD (G ) . (47)

(Institute) Interpolating sequences and bilinear Hankel forms for the classical Dirichlet spaceJune 20, 2011 127 / 149



Proof of the Main Result: discussion

To complete the proof of our main result, we will show that µb is a
D-Carleson measure by verifying Stegenga�s condition (18); that is,
we will show that for any �nite collection of disjoint arcs fIjgNj=1 in
the circle T we have

µb

�
�
[
N

j=1T (Ij )
�
� C CapD

�
�
[
N

j=1Ij

�
.

In fact we will see that it su¢ ces to verify this for the sets

G =
�
[
N

j=1Ij described in (38) that are near extremals for (37). We
will prove the inequality

µb (VG ) � C kTbk
2 CapD (G ) . (47)

(Institute) Interpolating sequences and bilinear Hankel forms for the classical Dirichlet spaceJune 20, 2011 127 / 149



Proof discussion continued

Once we have this, Corollary 19 yields

M =

R
T

µb (Tθ (G )) dσR
T
Capθ (G ) dσ

� µb (VG )R
T
Capθ (G ) dσ

� C kTbk2 .

By Corollary 20 kµbk
2
D�Carleson � M which then completes the proof

of Theorem 8.
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Proof of the Main Result

We now turn to the proof of the estimate (47). Let
1
2 < β < β1 < γ < α < 1 to be �xed later. Let G be an open subset
of the circle T satisfying (38) with ε > 0 to be chosen below. Let T
be a Bergman tree.

We de�ne in succession the following regions in the disk,

VG = TT (G ) , V α
G = G

α
D,

V γ
G =

\
(V α
G )

γ
α
T , V β

G =
�
V γ
G

� β
γ

D ,

so that VG is the T -tent associated with G , V α
G is a disk blowup of G ,

V γ
G is a T -capacitary blowup of V α

G , and V
β
G is a disk blowup of V

γ
G .

Using the natural bijections introduced above, we write

VG = fwkgk and V α
G = fw α

k gk and V
γ
G =

�
wγ
k

	
k and V

β
G =

n
w β
k

o
k
,

(48)
with wk ,w α

k ,w
γ
k ,w

β
k 2 T . Following previous notation we write

E = V α
G and F = V

γ
G .
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Proof of the Main Result 3

We will obtain our estimate (47) by using the boundedness of Tb on
certain functions f and g in D. The function f will be approximately
b0χVG , and the function g will be constructed using an approximate
extremal function and will be approximately equal to χVG .

Now de�ne Φ as in (28) above, so that we have the estimates in
Proposition 17 and Corollary 18. From Corollary 19 and (36) we
obtain

CapT (E ,F ) � CCapDG . (49)

We will use g = Φ2 and

f (z) = Γs

�
1

(1+ s) ζ
χVG b

0 (ζ)

�
(z) (50)

as our test functions in the bilinear inequality

jTb (f , g)j � kTbk kf kD kgkD . (51)
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Proof of the Main Result 4

From (50) we have

f (z) =
Z
VG

b0 (ζ) (1� jζj2)s�
1� ζz

�1+s dA

(1+ s) ζ
.

Thus

f 0 (z) =
Z
VG

b0 (ζ) (1� jζj2)s�
1� ζz

�2+s dA

= b0 (z)�
Z

DnVG

b0 (ζ) (1� jζj2)s�
1� ζz

�2+s dA

= b0 (z) +Λb0 (z) ,

by the reproducing property of the generalized Bergman kernels
(1�jζj2)

s

(1�ζz)
2+s , and
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Proof of the Main Result 5

where

Λb0 (z) = �
Z

DnVG

b0 (ζ) (1� jζj)s�
1� ζz

�2+s dA. (52)

Now if we plug f and g = Φ2 as above in Tb (f , g) we obtain
Tb (f , g) = Tb

�
f ,Φ2

�
= Tb (fΦ,Φ) which we analyze asZ

D

�
f 0 (z)Φ (z) + 2f (z)Φ0 (z)

	
Φ (z) b0 (z)dA+ f (0)Φ (0)2 b (0)(53)

= f (0)Φ (0)2 b (0) +
Z

D

��b0 (z)��2 Φ (z)2 dA

+2
Z

D
Φ (z)Φ0 (z) f (z) b0 (z)dA+

Z
D

Λb0 (z) b0 (z)Φ (z)2 dA

= (1) + (2) + (3) + (4).
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Proof of the Main Result 6

Trivially, we have

j(1)j � C kbk2D CapT (E ,F ) � C kTbk
2 CapT (E ,F ) . (54)

Now we write

(2) =
Z

D

��b0 (z)��2 Φ (z)2 dA (55)

=

�Z
VG
+
Z
V β
G nVG

+
Z

DnV β
G

� ��b0 (z)��2 Φ (z)2 dA

= (2A) + (2B ) + (2C ).
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Proof of the Main Result 7

The main term (2A) satis�es

(2A) = µb (VG ) +
Z
VG

��b0 (z)��2 �Φ (z)2 � 1
�
dA (56)

= µb (VG ) +O
�
kTbk2 Cap (E ,F )

�
,

by (32) and (17).

For term (2B) we use (39) to obtain

j(2B )j � Cµb

�
V β
G n VG

�
� C εµb (VG ) . (57)

Using (32) once more, we see that term (2C) satis�es

j(2C )j �
Z

DnV β
G

��b0 (z)��2 �Cα,β,ρCapT (E ,F )
�3 dA (58)

� C kTbk2 CapT (E ,F ) .
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Proof of the Main Result 8

Altogether, using (54), (55), (56), (57) and (58) in (53) we have

µb (VG ) �
��Tb �f ,Φ2���+ Cµb

�
V β
G n VG

�
(59)

+C kTbk2 CapT (E ,F ) + j(3)j+ j(4)j .

We estimate (3) using Cauchy-Schwarz with ε > 0 small as follows:

j(3)j � 2
Z

D

��Φ (z) b0 (z)�� ��Φ0 (z) f (z)
�� dA

� ε
Z

D

��Φ (z) b0 (z)��2 dA+ C
ε

Z
D

��Φ0 (z) f (z)
��2 dA

= (3A) + (3B ).

Using the decomposition and argument surrounding term (2) we
obtain

j(3A)j � ε

�Z
VG
+
Z
V β
G nVG

+
Z

DnV β
G

� ��Φ (z) b0 (z)��2 dA (60)

� C ε
�

µb (VG ) + C kTbk
2 CapT (E ,F ) .

�
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Proof of the Main Result 9

To estimate term (3B ) we use

jf (z)j �
����Γs � 1

(1+ s) ζ
χVG b

0 (ζ)

�
(z)

����
�

Z
VG

�
1� jζj2

�s
��1� ζz

��1+s ��b0 (ζ)�� dA
� ∑

γ2T1\VG

�
1� jγj2

�1+s
j1� γz j1+s

Z
Bγ

��b0 (ζ)�� �1� jζj2� dλ (ζ)

= ∑
γ2T1\VG

�
1� jγj2

�1+s
j1� γz j1+s

b� (γ) ,

where

∑
γ2T1\VG

b� (γ)2 � ∑
γ2T1\VG

Z
Bγ

��b0 (ζ)��2 �1� jζj2�2 dλ (ζ) =
Z
VG

��b0 (ζ)��2 dA.
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Proof of the Main Result 10

We now use the separation of D n V α
G and VG . The facts that

A = supp (h) � D n V α
G and B = T1 \ VG � VG , together with

Lemma 10, insure that (44) is satis�ed.

Hence we can use Lemma 25 and the representation of Φ in 28 to
continue with

(3B ) =
Z

D

��Φ0 (z) f (z)
��2 dA � C  ∑

κ2A
h (κ)2

! 
∑

γ2B
b� (γ)2

!
,

We also have from (17) and Corollary 18 that 
∑

κ2A
h (κ)2

! 
∑

γ2B
b� (γ)2

!
� CCap (E ,F ) kTbk2 .
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Proof of the Main Result 11

Altogether we then have

(3B ) � C CapT (E ,F ) kTbk2 , (61)

and thus also

j(3)j � ε
Z
VG

��b0 (z)��2 + C kTbk2 CapT (E ,F ) . (62)

We begin our estimate of term (4) by

j(4)j =

����Z
D

Λb0 (z) b0 (z)Φ (z)2 dA
���� (63)

�
rZ

D
jb0 (z)Φ (z)j2 dA

rZ
D
jΛb0 (z)Φ (z)j2 dA

where the �rst factor is
q

1
ε (3A).
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Proof of the Main Result 12

Now we claim the following estimate for (4A) = kΦΛb0kL2(D):

(4A) =
Z

D

��Φ (z)Λb0 (z)
��2 dA (64)

� Cµb

�
V β
G n VG

�
+ C kTbk2 CapT (E ,F ) (65)

� εµb (VG ) + C kTbk
2 CapT (E ,F ) .

Indeed, the second inequality follows from (39), so we now turn to
the �rst inequality.
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Proof of the Main Result 13

From (52) we obtain

(4A) =
Z

D
jΦ (z)j2

�����
�Z

V β
G nVG

+
Z

DnV β
G

�
b0 (ζ) (1� jζj)s�
1� ζz

�2+s dA

�����
2

dA

� C
Z

D
jΦ (z)j2

 Z
V β
G nVG

jb0 (ζ)j (1� jζj)s��1� ζz
��2+s dA

!2
dA

+C
Z

D
jΦ (z)j2

�����
Z

DnV β
G

b0 (ζ) (1� jζj)s�
1� ζz

�2+s dA

�����
2

dA

= (4AA) + (4AB ).
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Proof of the Main Result 14

Corollary 24 shows that

j(4AA)j �
Z

D

 Z
V β
G nVG

jb0 (ζ)j (1� jζj)s��1� ζz
��2+s dA

!2
dA

� C
Z
V β
G nVG

��b0 (ζ)��2 dA = Cµb

�
V β
G n VG

�
.

We write the second integral as

(4AB ) =

�Z
V γ
G

+
Z

DnV γ
G

�
jΦ (z)j2

�����
Z

DnV β
G

b0 (ζ) (1� jζj)s�
1� ζz

�2+s dA

�����
2

dA

= (4ABA) + (4ABB ).
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Proof of the Main Result 15

By Corollary 24 again,

j(4ABB )j � C CapT (E ,F )
2
Z

D

��b0 (ζ)��2 dA
� C kTbk2 CapT (E ,F )2

� C kTbk2 CapT (E ,F ) .

Finally, with β < β1 < γ < α < 1, Corollary 24 shows that the term
(4ABA) satis�es the following estimate. Recall that V

γ
G = [J

γ
k and

wγ
j = z

�
Jγ
k

�
. We set A` =

n
k : Jγ

k � J
β1
`

o
and de�ne ` (k) by the

condition k 2 A`(k ). Then using the geometric separation of D n V β
G

and V γ
G in Lemma 10, we complete the proof of (64) as follows:

(Institute) Interpolating sequences and bilinear Hankel forms for the classical Dirichlet spaceJune 20, 2011 142 / 149



Proof of the Main Result 15

By Corollary 24 again,

j(4ABB )j � C CapT (E ,F )
2
Z

D

��b0 (ζ)��2 dA
� C kTbk2 CapT (E ,F )2

� C kTbk2 CapT (E ,F ) .

Finally, with β < β1 < γ < α < 1, Corollary 24 shows that the term
(4ABA) satis�es the following estimate. Recall that V

γ
G = [J

γ
k and

wγ
j = z

�
Jγ
k

�
. We set A` =

n
k : Jγ

k � J
β1
`

o
and de�ne ` (k) by the

condition k 2 A`(k ). Then using the geometric separation of D n V β
G

and V γ
G in Lemma 10, we complete the proof of (64) as follows:

(Institute) Interpolating sequences and bilinear Hankel forms for the classical Dirichlet spaceJune 20, 2011 142 / 149



Proof of the Main Result 16

j(4ABA)j � C
Z
V γ
G

 Z
DnV β

G

jb0 (ζ)j (1� jζj)s��1� ζz
��2+s dA

!2
dA

� C ∑
k

Z
Jγ
k

��Jγ
k

��  jb0 (ζ)j (1� jζj)s��1� ζwγ
k

��2+s dA

!2
dA

= C ∑
k

��Jγ
k

�����Jβ1
`(k )

���
���Jβ1
`(k )

��� Z
Jγ
k

 
jb0 (ζ)j (1� jζj)s��1� ζwγ

k

��2+s dA

!2
dA
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Proof of the Main Result 17

� C ∑
`

∑k2A`
��Jγ
k

�����Jβ1
`

���
Z
J

β1
`

 Z
DnV β

G

jb0 (ζ)j (1� jζj)s��1� ζz
��2+s dA

!2
dA

� C
���V β1
G

���ε(γ�β1)
Z
V

β1
G

 Z
DnV β

G

jb0 (ζ)j (1� jζj)s��1� ζz
��2+s dA

!2
dA

� C
���V β1
G

���ε(γ�β1) kbk2D � C kTbk
2 CapT (E ,F ) .
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Proof of the Main Result 18

Now we can estimate term (4) by

j(4)j =

����Z
D

Λb0 (z) b0 (z)Φ (z)2 dA
���� (66)

�
rZ

D
jb0 (z)Φ (z)j2 dA

rZ
D
jΛb0 (z)Φ (z)j2 dA

�
q
(3A)/ε

q
(4A) (67)

�
q
Cµb (VG ) + C kTbk

2 CapT (E ,F )

�
q

εµb (VG ) + C kTbk
2 CapT (E ,F )

�
p

εµb (VG ) + C
q

µb (VG )
q
kTbk2 CapT (E ,F )

+C kTbk2 CapT (E ,F ) ,

using (64) and the estimate (60) for (3A) already proved above.
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Proof of the Main Result 19

Finally, we estimate Tb
�
f ,Φ2

�
= Tb (fΦ,Φ)by

jTb (fΦ,Φ)j � kTbk kΦkD kΦf kD � C kTbk
q
CapT (E ,F ) kΦf kD .

Now

kΦf k2D � C
Z ��Φ0 (z) f (z)

��2 dA+ C Z ��Φ (z) f 0 (z)��2 dA
� C j3A j+ C j3B j+ C

Z ��Φ (z)Λb0 (z)
��2 dA

� Cµb (VG ) + C kTbk
2 CapT (E ,F ) ,

by (64) and the estimates (60) and (61) for (3A) and (3B ).
When we plug this into the previous estimate we get that��Tb �f ,Φ2

��� is at most
C kTbk

q
CapT (E ,F )

q
µb (VG ) + kTbk

2 CapT (E ,F ) (68)

� C
q
kTbk2 CapT (E ,F )(

q
µb (VG ) + kTbkCapT (E ,F )

1
2 ).

(Institute) Interpolating sequences and bilinear Hankel forms for the classical Dirichlet spaceJune 20, 2011 146 / 149



Proof of the Main Result 19

Finally, we estimate Tb
�
f ,Φ2

�
= Tb (fΦ,Φ)by

jTb (fΦ,Φ)j � kTbk kΦkD kΦf kD � C kTbk
q
CapT (E ,F ) kΦf kD .

Now

kΦf k2D � C
Z ��Φ0 (z) f (z)

��2 dA+ C Z ��Φ (z) f 0 (z)��2 dA
� C j3A j+ C j3B j+ C

Z ��Φ (z)Λb0 (z)
��2 dA

� Cµb (VG ) + C kTbk
2 CapT (E ,F ) ,

by (64) and the estimates (60) and (61) for (3A) and (3B ).

When we plug this into the previous estimate we get that��Tb �f ,Φ2
��� is at most

C kTbk
q
CapT (E ,F )

q
µb (VG ) + kTbk

2 CapT (E ,F ) (68)

� C
q
kTbk2 CapT (E ,F )(

q
µb (VG ) + kTbkCapT (E ,F )

1
2 ).

(Institute) Interpolating sequences and bilinear Hankel forms for the classical Dirichlet spaceJune 20, 2011 146 / 149



Proof of the Main Result 19

Finally, we estimate Tb
�
f ,Φ2

�
= Tb (fΦ,Φ)by

jTb (fΦ,Φ)j � kTbk kΦkD kΦf kD � C kTbk
q
CapT (E ,F ) kΦf kD .

Now

kΦf k2D � C
Z ��Φ0 (z) f (z)

��2 dA+ C Z ��Φ (z) f 0 (z)��2 dA
� C j3A j+ C j3B j+ C

Z ��Φ (z)Λb0 (z)
��2 dA

� Cµb (VG ) + C kTbk
2 CapT (E ,F ) ,

by (64) and the estimates (60) and (61) for (3A) and (3B ).
When we plug this into the previous estimate we get that��Tb �f ,Φ2

��� is at most
C kTbk

q
CapT (E ,F )

q
µb (VG ) + kTbk

2 CapT (E ,F ) (68)

� C
q
kTbk2 CapT (E ,F )(

q
µb (VG ) + kTbkCapT (E ,F )

1
2 ).

(Institute) Interpolating sequences and bilinear Hankel forms for the classical Dirichlet spaceJune 20, 2011 146 / 149



Proof of the Main Result 20

Using Proposition 21 and the estimates (62), (66) and (68) in (59)
we obtain

µb (VG ) �
p

εµb (VG ) + C kTbk
2 Cap (E ,F )

+C
q
kTbk2 Cap (E ,F )

q
µb (VG )

�
p

εµb (VG ) + C kTbk
2 Cap (E ,F ) .

Absorbing the �rst term on the right side, and using (49), we �nally
obtain

µb (VG ) � C kTbk
2 CapT (E ,F ) � C kTbk2 CapDG ,

which is (47).
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An open problem

The theorem for the Hilbert space H = D proved above is similar in
many respects to the result of Maz�ya and Verbitsky on Schrödinger
forms on the Sobolev space H = W 1,2, not involving function theory
at all: Let Q be a complex-valued distribution on Rn, n � 3.Then����Z

Rn
u (x) v (x)Q (x)dx

���� . krukL2 krvkL2 ,
holds if and only if Q = div Γ whereZ

Rn
ju (x)j2 jΓ (x)j2 dx . kruk2L2 .

It is fascinating that although there is a great deal of variety in the
techniques used in the two proofs, there is a surprising similarity in
the answers obtained. The answer, quite generally, is that for some
di¤erential operator D, jDbj2 can be used to de�ne a Carleson
measure for H.
What speci�c connections are there?
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THE

END
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