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Part 1

Overview
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Overview

@ In these lectures we discuss two theorems regarding the function
theory of the classical Dirichlet space D:
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Overview

@ In these lectures we discuss two theorems regarding the function
theory of the classical Dirichlet space D:

@ The characterization of interpolating sequences Z = {zj-}j.il C D for
D and its multiplier algebra Mp in terms of separation of the points
z; and embedding of the Dirichlet space in a Lebesgue space L? (i),

where p, =y, mézj;
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Overview

@ In these lectures we discuss two theorems regarding the function
theory of the classical Dirichlet space D:

© The characterization of interpolating sequences Z = {Zj}j; C D for
D and its multiplier algebra Mp in terms of separation of the points
z; and embedding of the Dirichlet space in a Lebesgue space L? (1),
where i, =Y m&zj;

@ A characterization of the holomorphic functions b (called symbols) for
which the bilinear form By, (f, g) = (fg, b)p is bounded on D x D.
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Overview

@ In these lectures we discuss two theorems regarding the function
theory of the classical Dirichlet space D:

© The characterization of interpolating sequences Z = {zj};il C D for
D and its multiplier algebra Mp in terms of separation of the points
z; and embedding of the Dirichlet space in a Lebesgue space L? (i),
where i, =Y m&zj;

@ A characterization of the holomorphic functions b (called symbols) for
which the bilinear form By, (f, g) = (fg, b)p is bounded on D x D.

@ These theorems have some counterparts for p # 2 and n > 1, but the
proofs are often more difficult and the results incomplete.
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Overview

Interpolating sequences

Z = {zj}j';l is interpolating for D, equivalently Mp, if and only if Z is
separated and i, = 2}";1 W is a Carleson measure.
12

@ A sequence of points Z = {zj-};.il in the unit disk ID is said to be
interpolating for D if the weighted restriction map Rz : D — £
given by

= —f(zj) : zi) ~ ni1
RZf_{\/lJrﬁ(O,Zj)}j_l' PO.5) =iy

maps into and onto ¢?; and interpolating for the multiplier algebra

Mp if R : Mp — (% is onto where Rf = {f (zJ-)}j.il.
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Overview

Interpolating sequences

Z = {zj}j';l is interpolating for D, equivalently Mp, if and only if Z is

separated and pi, = Y22, m is a Carleson measure.

@ A sequence of points Z = {zj-};il in the unit disk ID is said to be
interpolating for D if the weighted restriction map Ry : D — (%
given by

= —f(zj> i zZj) =~ ni1
sz‘{\ﬁﬁ(o,zj)}j_l’ PO~

maps into and onto ¢?; and interpolating for the multiplier algebra

Mp if R : Mp — (% is onto where Rf = {f (zj)};il

@ The sequence Z is separated if inf;.; B (z;, z;) > 0.
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Overview

Interpolating sequences

Z = {zj}j';l is interpolating for D, equivalently Mp, if and only if Z is
1

separated and i, = 2}";1 T98(02) is a Carleson measure.

@ A sequence of points Z = {zj-};il in the unit disk ID is said to be
interpolating for D if the weighted restriction map Ry : D — (%
given by

= —f(zj> i zZj) =~ ni1
sz‘{\ﬁﬁ(o,zj)}j_l’ PO~

maps into and onto ¢?; and interpolating for the multiplier algebra
Mp if R : Mp — (% is onto where Rf = {f (zj)};il
o The sequence Z is separated if inf;.; B (zi, z;) > 0.
@ A positive measure i is a Carleson measure if D C L? ().
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Overview

Bilinear Hankel forms

@ For a holomorphic symbol function b define the bilinear form

Ty (f.8) = (fe.bp = B (0) + [ (Fe+f)F,
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Overview

Bilinear Hankel forms

@ For a holomorphic symbol function b define the bilinear form
To(f.g) = (fg.b)p = fgb (0) + [ (Fig+1&)F.

@ A result of Rochberg and Wu is that the half forms [, (f'g) b’ and

Jp (fg') b’ are each bounded on D x D if and only if b € X, where
X is the space of holomorphic functions with norm

l6lly = 16(0)] + ||/ ()| da

1
’ < 0.
CM(D)
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Overview

Bilinear Hankel forms

@ For a holomorphic symbol function b define the bilinear form
To(f.g) = (fg.b)p = fgb (0) + [ (Fig+1&)F.

@ A result of Rochberg and Wu is that the half forms [, (f'g) b’ and

Jp (fg') b’ are each bounded on D x D if and only if b € X, where
X is the space of holomorphic functions with norm

1
2
< 0.

18112 = 16©)] + |6 (2)" 04, .,

@ The question arises as to whether or not there is significant
cancellation in the sum of the half forms, and the answer is NO:

1bllx = (I Tollpxp = sup [Ts(f g)[.
1#llplllp<
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Overview

Bilinear Hankel forms and the Two Weight Inequality for the Hilbert transform

@ Splitting a bilinear form B into natural pieces B; and B, and then
asking if the pieces B; are each bounded when B is, is a question that
arises often.
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Overview

Bilinear Hankel forms and the Two Weight Inequality for the Hilbert transform

@ Splitting a bilinear form B into natural pieces B; and B, and then
asking if the pieces B; are each bounded when B is, is a question that
arises often.

@ For example, the usual attack (initiated by Nazarov, Treil and
Volberg) on the two weight norm inequality for the Hilbert transform

[(H(fo) . 8) 0l S Ifll 20 gl 2wy »

begins by splitting the bilinear form on the left according to the
length of the intervals in the Haar decompositions

f= ZI dyadic <f h0> hU and g = ZJ dyadic <gv h > hw

(H(fo), <Z + Z) (f. 7} (H(hio) h5), (g.hg).

<) [1>]4]

(Institute) Interpolating sequences and bilinear Hankel fc June 20, 2011 6 / 149



Overview

Bilinear Hankel forms and the Two Weight Inequality for the Hilbert transform

@ Splitting a bilinear form B into natural pieces B; and B, and then
asking if the pieces B; are each bounded when B is, is a question that
arises often.

@ For example, the usual attack (initiated by Nazarov, Treil and
Volberg) on the two weight norm inequality for the Hilbert transform

[(H(fo) . )0l S Ifll 20 gl 2wy »

begins by splitting the bilinear form on the left according to the
length of the intervals in the Haar decompositions

f= ZI dyadic (f h0> hg and g = ZJ dyadic (gv h > hw

(H(fo), ( Y, ) ) (f.h7) (H(hio) h5), (g, hg).

<l 1>

o It is not known if the boundedness of By = } ;< and By =} ;15 y
follow from that of B = (H (fo), g),,-
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Part 2

Preliminaries
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The unit disk

Automorphisms and invariance

o Let D be the unit disk in C. Let dz be Lebesgue measure on C and
let dA (z) = ——% = be the invariant measure on the disk, i.e.,

TP
/]D(fogoa)(z)d)\(z):/]Df(z)d)\(z), acD,feH(D),

where
a—z
(P"(Z>:1—§z' a,ze D,

are the automorphisms of the disk.
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The unit disk

Automorphisms and invariance

o Let ID be the unit disk in C. Let dz be Lebesgue measure on C and
let dA (z) =

W be the invariant measure on the disk, i.e.,

/]D(foq)a)(z)d)t(z):/]Df(z)d/\(z), aeD,feH(D),

where

a—z

(P3(2>:1—§z a,ze D,
are the automorphisms of the disk.
@ The Poincaré/Bergman metric is
1 1
ﬁ(z,w)zfnw, z,w € D.
1—g, (w)]
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Cauchy's formula

Cauchy’s formula yields

fz) = 1/Tf(w) dw:l/ f.(eie) jeido

27 w—2z 27ti JT e® —

1 f(e
— fk,d
27‘[/1—e’9 / b

for f € H(ID) N C (D), where

ky (w) = zeD,weD.

1—Zzw
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Magic Bullet #1

@ We have the following identities for a, z, w € ID:

(1-1aP) =2 g, (a)ku (2)
kw ( '

1-¢,(2),(w) = (1—aw) (1 z3) w (2) ks (a)
) (1=1aP) (1=12") k()
1_‘4)3(2)’ = ‘1725’2 B kz(z)ka(a).
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Magic Bullet #1

@ We have the following identities for a, z, w € ID:

(1-1aF) 1-2®) &, @)k (2)

170 @00 W) = AT ) ke (ke (a)]

2 2
o~ B0
v 11— 23’ k (2) ka (3)°
e With the definitions d (z;, 7)) = | {5 | and k, (w) = kzk“:)), the
latter can be rewritten,
— 1\ |2
d (21,7 + | (ko k)| =1, (1)
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The pseudohyperbolic metric

@ The function d is called the pseudohyperbolic metric on ID, and can
be generalized to the Hilbert function spaces treated below.
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The pseudohyperbolic metric

@ The function d is called the pseudohyperbolic metric on ID, and can
be generalized to the Hilbert function spaces treated below.

@ Because of the identity (1), d (z;, zj) can be thought of as the sine of
the angle 8;; between k; and k. This interpretation leads to the
following cute proof that d is a metric.
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The pseudohyperbolic metric

@ The function d is called the pseudohyperbolic metric on ID, and can
be generalized to the Hilbert function spaces treated below.

@ Because of the identity (1), d (z;, zj) can be thought of as the sine of
the angle 8;; between k;, and k. This interpretation leads to the
following cute proof that d is a metric.

@ From geometry we have 0;; < 0;; + 0;,. If the right side is at most 7,
then

sinf;; < sin (GU- + ng) <sin0; +sinbj;
otherwise, we have

sinfjp <1 <sin0; +sind;.
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The pseudohyperbolic metric

@ The function d is called the pseudohyperbolic metric on ID, and can
be generalized to the Hilbert function spaces treated below.

@ Because of the identity (1), d (z;, zj) can be thought of as the sine of
the angle 8;; between k;, and k. This interpretation leads to the
following cute proof that d is a metric.

o From geometry we have 0, < 0;; + 6;,. If the right side is at most 7,
then

sinf;p < sin (9,-1- + 01[) <sin6j +sinbjy;

otherwise, we have
sinfiy <1 <sinf; +sint.

o Finally, there is a formula relating the Bergman and pseudohyperbolic
metrics: ) 4d( )
+ zZ, W
= —log ———M~.
p(z.w) ZOgl—d(z,W)
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The Dirichlet space

@ The classical Dirichlet space D of holomorphic functions f on the
unit disk ID satisfying

[fllpe = {/ L€ dxdy}1 Area (f (Q)) < oo,

occupies a pivotal endpoint niche in the theory of Hilbert spaces of
holomorphic functions satisfying Sobolev type conditions.
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The Dirichlet space

@ The classical Dirichlet space D of holomorphic functions f on the
unit disk ID satisfying

Il = {/D I <z>\2dxdy}é = \JArea (f (Q)) <,

occupies a pivotal endpoint niche in the theory of Hilbert spaces of
holomorphic functions satisfying Sobolev type conditions.

@ As such, D inherits much of the character of the space BMO of
functions of bounded mean oscillation on the real line IR, which in
turn occupies a pivotal endpoint niche among the somewhat different
scale of Lebesgue spaces on the line.
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The Dirichlet space

@ The classical Dirichlet space D of holomorphic functions f on the
unit disk ID satisfying

HfHD*:{/D}f/(z)fdxdy}é: Area (f (Q))) < o,

occupies a pivotal endpoint niche in the theory of Hilbert spaces of
holomorphic functions satisfying Sobolev type conditions.

@ As such, D inherits much of the character of the space BMO of
functions of bounded mean oscillation on the real line IR, which in
turn occupies a pivotal endpoint niche among the somewhat different
scale of Lebesgue spaces on the line.

@ For all automorphisms ¢ of the disk, there is the invariance

IFogllp. = [ IF (9 N*]o ) dz= [ |F(w)[ dw = |flIp..
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Consequences of finite area

o If B is a finite Blaschke product in the disk,

then B (eig) wraps around the circle T = 9D exactly N times and so
the area (counting multiplicities) of the image B (D) is Nrt.
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Consequences of finite area

o If B is a finite Blaschke product in the disk,

then B (eie) wraps around the circle T = 9D exactly N times and so
the area (counting multiplicities) of the image B (D) is N.

@ A thorny consequence of this is that the Dirichlet space contains no
infinite Blaschke products (since their images cover the disk infinitely
often), and hence the zeroes of a Dirichlet space function cannot be
factored out as is the case for a Hardy space function.
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Carleson measures

@ A geometric characterization of when the Dirichlet space D embeds
in the Lebesgue space L2 (1) is the testing condition:

dw
5 < Ceestingit (S (2)),  ze€D.

(1)

Jo B S ()
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Carleson measures

@ A geometric characterization of when the Dirichlet space D embeds
in the Lebesgue space L2 (1) is the testing condition:

dw
Joo S 2 < Coomegp (5(2)), 2D,

)

@ An earlier capacity condition characterization of Stegenga is

H (U S (Z)> < Ceapacity Cap (U /(z)) . 1(2)=035(z)NT.

zeF zeF
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Carleson measures

@ A geometric characterization of when the Dirichlet space D embeds
in the Lebesgue space L2 (1) is the testing condition:

dw
Joo S 2 < Coomegp (5(2)), 2D,

)

@ An earlier capacity condition characterization of Stegenga is

(U S(z ) S Ceapacity Cap (U I(z ) I(z) =39S (z)NT.

zeF zeF

@ We denote by ||| cpp) the square of the norm of the embedding so
that

HV”C/\/](D) ~ Ctesting ~ Ccapacity -
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A connection between conditions

@ Upon passing to boundary values, the capacity condition is equivalent
to the weak type potential inequality

< 11l 20wy

Ilf‘

L200

which by duality is equivalent to the restricted strong type inequality

Lem) < lellg

L2(T)
which by definition holds if and only if

(IEV) < HlEHme = .\/|E|, all sets E C T.
) : Z

Iy
2
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A connection between conditions

@ Upon passing to boundary values, the capacity condition is equivalent
to the weak type potential inequality

/lf‘

2

L2,oo

< |If .
o S Il

which by duality is equivalent to the restricted strong type inequality

I (gn) - S el

L2(

which by definition holds if and only if

I% (]-Eﬂ)‘ 12(T) N ||1E||L2’1(V) = ,/|E|y, all sets E C T.

@ On the other hand, the boundary equivalent of the testing condition is

‘ /% (IIV)HLQ(T) S HIIHL“(H) = \/m allarcs I C T,

which gives the inequality Cresting S Ceapacity -

(Institute) Interpolating sequences and bilinear Hankel fc June 20, 2011 15 /



The tree Dirichlet space

It turns out that the Dirichlet space D (ID) can be effectively
modeled on the tree 7 by the following Hilbert space of
complex-valued functions f : 7 — C on 7:

D(T) = {f = (F(@))ger + 1 IAF (0 < 00},

aeT

with inner product

(f.g) = ZTN(“) Ag (),

and where the backward difference operator A\ is defined on functions
f by

_ f (o) if a=o
N(“)_{ fle)—f(Pa) if a#o
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Continuity of the restriction map

@ The restriction map R : D (ID) — D (7)) defined by
Rf = (f(c(a))) e for f € D(ID) turns out to be continuous.
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Continuity of the restriction map

@ The restriction map R : D (ID) — D (7)) defined by
Rf = (f (c(@)))uer for f € D(ID) turns out to be continuous.

@ To see this let « € 7, and denote by B, the largest ball contained in
K («) that is centered at ¢ («). In addition denote by H, the convex
hull of B, and Bp,. Then the mean value property for holomorphic
functions, the fundamental theorem of calculus and the change of
variable w = tz + (1 — t) { give the following chain of (in)equalities:
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Chain of (in)equalities

| (&) =

f(Pa)]

|f (e (a)) = f (c(Pa))]
1

| |/ f(z) dz — IB;I . g)dg‘
[Ba| [Beal //B —f(¢ dzd@‘
!Bar|BPa|/a/BPa/o (z=0) - Vi(tz+(1-1){)c

diam (

4 182 Bl o o [ 17 a0

Cdiam (Hy) “j'/H I ()] dw.
o «

(Institute)

Interpolating sequences and bilinear Hankel fc June 20, 2011 18 / 149



Restriction and Carleson measures

@ Now we compute that

IRFlIpery = [FPF+ Y If («) = f (Pa)|®
aeT
diam ( 2 , 2
< |+c27 |H| /|f w)[? dw
ne

< \f<o>|2+c/D|f'<w>| de < C |l

since diam (Hw)2 ~ |Hp,| and the sets H, have finite overlap at most
two in the disk.
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Restriction and Carleson measures

@ Now we compute that

IRFlIpery = IFF+ Y If («) = f (Pa)|®
aeT
diam ( 2 , 2
< [FOP+C Y ‘H| /|f w)|? dw
aeT
<

o>|2+c/D|f' (@) deo < €[y

since diam (H,)? ~ |H,| and the sets H, have finite overlap at most
two in the disk.

@ A major advantage of the model space D (7') is that the so-called
Carleson measures for D (7) are easily calculated; these are the
positive measures y on 7, which here are the same as the
nonnegative functions p on 7, for which we have an embedding of

D(T) into L2 (p), i.e.
IFllZ < Cllflpry . FED(T). (2)
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Reflections on trees

@ Trees have been used in analysis for some time, but possibly the first
instance of their use in the spirit above occurs in the atomic
decomposition of spaces of holomorphic functions in Coifman and
Rochberg. The above tree model has an equally simple and effective
analogue in the case of the spaces B (D) when 0 < ¢ < 3.
However, the model must be significantly changed in order to be of

1
use for the Hardy space B} (D) = H? (D).
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Reflections on trees

@ Trees have been used in analysis for some time, but possibly the first
instance of their use in the spirit above occurs in the atomic
decomposition of spaces of holomorphic functions in Coifman and
Rochberg. The above tree model has an equally simple and effective
analogue in the case of the spaces BS (ID) when 0 < ¢ < 3.
However, the model must be significantly changed in order to be of
use for the Hardy space Bz% (D) = H? (D).

@ In higher dimensions, one can construct an analogue 7, for the ball
B,, of the tree 7 constructed above for the disk, but the construction
is necessarily messy due to the fact that the sphere S¥ is not neatly
tiled when k > 1. While the corresponding tree space D (7,) remains
effective for calculating the Carleson measures of the Dirichlet space
B (B,) = D (B,) on the ball, it is no longer an adequate model for
characterizing interpolation for the Dirichlet space since the
corresponding restriction map R fails to be continuous from D (IB,)
to D (7,) when n > 1.
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Reflections on trees 2

@ Instead one can introduce a holomophic structure on the tree 7,
(that mirrors the holomorphic geometry of the ball) and redefine the
model space D (7,) to take this structure into account.

(Institute) Interpolating sequences and bilinear Hankel fc June 20, 2011 21 / 149



Reflections on trees 2

@ Instead one can introduce a holomophic structure on the tree 7,
(that mirrors the holomorphic geometry of the ball) and redefine the
model space D (7,) to take this structure into account.

@ The result is that the restriction operator is now continuous, and
using this with some other special properties of the model, the
Carleson measures and interpolating sequences for D (B,) can be
characterized.
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Reflections on trees 2

@ Instead one can introduce a holomophic structure on the tree 7,
(that mirrors the holomorphic geometry of the ball) and redefine the
model space D (7,) to take this structure into account.

@ The result is that the restriction operator is now continuous, and
using this with some other special properties of the model, the
Carleson measures and interpolating sequences for D (BB,,) can be
characterized.

e Finally, the unstructured model D (7,) extends to an effective model
for calculating Carleson measures for the spaces BY (B,,) with
0<ro< % But again, this model breaks down at the Drury-Arveson

1
Hardy space B} (B,) = H>.
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Reflections on trees 2

@ Instead one can introduce a holomophic structure on the tree 7,
(that mirrors the holomorphic geometry of the ball) and redefine the
model space D (7,) to take this structure into account.

@ The result is that the restriction operator is now continuous, and
using this with some other special properties of the model, the
Carleson measures and interpolating sequences for D (BB,,) can be
characterized.

e Finally, the unstructured model D (7,) extends to an effective model
for calculating Carleson measures for the spaces BY (IB,) with
0<o< % But again, this model breaks down at the Drury-Arveson

1
Hardy space B; (B,) = H2.
@ Yet a different geometric structure is needed on the tree 7, to

compute the Carleson measures for the Drury-Arveson Hardy space
H?.
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Part 3

Interpolating sequences

The most satisfying proof solves the interpolating
problem for a large collection of Hilbert spaces,
those with the complete Nevanlinna-Pick property,

so we begin with a discussion of Hilbert function
spaces.
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Reproducing kernels

@ For f(z) =Y ganz" and g (z) = Y5 bpz", the inner product

corresponding to the norm 1/ ||f||2. + || ]| satisfies

(. ow) = [FOE@m@)+2 [ ()5 @y

= Zn+1 anbp, f,.g € D(D),
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Reproducing kernels

e For f(z) =Y ganz" and g (z) = Y5 bpz", the inner product

corresponding to the norm 1/ ||f||2. + || ]| satisfies
(F 8o = / F(©8@dm @)+ [ 1 () @y
= 2(n+1)anFn, f.g € D(D),
n=0

@ The reproducing kernel k, (w) for the Dirichlet space is given by

1 1 > 1
k, (w) = — log =

En n
zZw l-zw =n+1

i

where the branch of Iog is taken to satisfy log1l = 0. Indeed, with
g = k, we have b, = z" for n > 0 and so

+l
00 17, 00 .
<f,kz>D(D):Z(n+1)ann+1z”:Zanz :f(Z)
n=0 n=0
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Hilbert function spaces

@ A Hilbert space 'H is said to be a Hilbert function space (aka a
reproducing kernel Hilbert space - RKHS) on a set Q) if the elements
of 'H are complex-valued functions f on () with the usual vector
space structure, such that each point evaluation on H is a nonzero
continuous linear functional, i.e. for every x € () there is a positive
constant C, such that

FON < Glfllye, M, (3)
and there is some f with f (x) # 0.
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Hilbert function spaces

o A Hilbert space H is said to be a Hilbert function space (aka a
reproducing kernel Hilbert space - RKHS) on a set Q) if the elements
of H are complex-valued functions f on ) with the usual vector
space structure, such that each point evaluation on H is a nonzero
continuous linear functional, i.e. for every x € () there is a positive
constant C, such that

F )< Gllflly,  feN, (3)

and there is some f with f (x) # 0.
@ The Riesz theorem shows there is a unique element k, € H such that

f(x) = (f, ke) forall x € Q.
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Hilbert function spaces

o A Hilbert space H is said to be a Hilbert function space (aka a
reproducing kernel Hilbert space - RKHS) on a set Q) if the elements
of H are complex-valued functions f on ) with the usual vector
space structure, such that each point evaluation on H is a nonzero
continuous linear functional, i.e. for every x € () there is a positive
constant C, such that

F )< Gllflly,  feN, (3)

and there is some f with f (x) # 0.
@ The Riesz theorem shows there is a unique element k, € H such that

f(x) = (f k) forall x € Q.
@ The element ky is called the reproducing kernel at x, and satisfies

ke () = (ky ke),  x,y € Q.
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Positive semidefinite kernels

@ Recall that a matrix A = [a,-j}fvjzl is semipositive definite, written
A=0, if

N
E-AZ= Y ¢ga; >0 gecV

ij=1
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Positive semidefinite kernels

@ Recall that a matrix A = [3ij],I'\,lj:1 is semipositive definite, written
A>0,if
Lo N
§-AZ=) ¢a;>0 fecCV

ij=1

@ The function k (x,y) = (ky, kc) = ky (y) is self- adjoint
(k (x,y) =k (y,x)), and for every finite subset {x,} _, of O, the
matrix [k (i, xj)];<; ;< is positive semidefinite:

N N -
Y GGk (i) = Y & (kg k)
ij=1 ij=1
N N N 2
_<Z§jk><j'2 /kx/>_ Y Gikg|| >0
Jj=1 i=1 i=1 H
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The connection with inner products

Given a kernel function k on ) x (), define an inner product on finite
linear combinations Y. ; &k, of the functions k. ({) = k (,x), { € Q,
by

N N N

ZC,-/(X,, Zﬂijj = Z gi’Tjk (Xjrxi) '

i=1 j=1 ij=1
and define the associated Hilbert function space Hy to be the completion

of the functions Y | &k, under the norm corresponding to the above
inner product.

(E. H. Moore) The Hilbert space Hy has kernel k. If H and H' are Hilbert
function spaces on () that have the same kernel function k, then there is
an isometry from H onto H' that preserves the kernel functions k,, x € Q).
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Pointwise multipliers

@ A function ¢ : () — C is said to be a pointwise multiplier on a
Hilbert function space H if ¢f € H for all f € H. From the closed
graph theorem we see that the operator M, : H — H defined by
M f = ¢f is bounded. The linear space of all such functions is
denoted M.
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Pointwise multipliers

@ A function ¢ : () — C is said to be a pointwise multiplier on a
Hilbert function space H if ¢f € H for all f € H. From the closed
graph theorem we see that the operator M, : H — H defined by
M f = ¢f is bounded. The linear space of all such functions is
denoted M.

@ Now assume that H contains the constant functions. Then My C 'H
since ¢ = @1. Moreover, the supremum norm of ¢, namely
|@lloo = supyxeq | (x)|, is bounded by the operator norm of M,,.
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Pointwise multipliers

@ A function ¢ : () — C is said to be a pointwise multiplier on a
Hilbert function space H if ¢f € H for all f € H. From the closed
graph theorem we see that the operator M, : H — H defined by
M f = ¢f is bounded. The linear space of all such functions is
denoted M.

@ Now assume that H contains the constant functions. Then My C 'H
since ¢ = @1. Moreover, the supremum norm of @, namely
|@llee = supxeq |@ (x)], is bounded by the operator norm of M,

@ But much more is actually true, namely that for each x € ), the

reproducing kernel ky is an eigenvector of the adjoint operator
Mg : H — 'H with corresponding eigenvalue ¢ (x).
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Magic Bullet #2

Suppose H is a Hilbert function space on Q). For ¢ € My, f € H and
x € Q),

(FMke) = (Myf k) = (Myf) (x)
= ¢(x)f(x)
= @) (f. k) = (F.9 (ke

which implies I\/I;;kx = ¢ (x)kx, and in particular,

9 ()] 1kl = [[¢ Gk

- HM:;kX

<[w:

el = [| M| 1Al
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The Nevanlinna-Pick interpolation problem

@ Suppose that H is a Hilbert function space of analytic functions on ()
with reproducing kernel k,, (z). Let Z = {zj}f:1 be a finite set of
points in () and consider the Nevanlinna-Pick interpolation problem:
For which sequences of data {g’fj }j:l C C is there ¢ € My with

muliplier norm one satisfying

p(z)=2¢, 1<;<n 4)
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The Nevanlinna-Pick interpolation problem

@ Suppose that H is a Hilbert function space of analytic functions on ()
with reproducing kernel k,, (z). Let Z = {zJ} be a finite set of
points in () and consider the Nevanlinna- Plck mterpolatlon problem:
For which sequences of data {(;"j}jzl C C is there ¢ € My with
muliplier norm one satisfying

9(z) =8 1<j<n (4)
@ There is an easy necessary condition for the data in terms of a certain

matrix being positive semidefinite. If || M| = [@llpy,, <1 then

. J
H./\/l; < 1 and for every choice of scalars {A;}:_; C C we have
J 2 J 2 J -
j=1 j=1 jym=
which is - J

[(1=¢iCm) kg (zm)] 1 = 0. (5)
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The Nevanlinna-Pick property and extremal problems

We say that the Hilbert space H (more precisely the inner product of
H) has the Nevanlinna-Pick property (NPP) if the implication above
can be reversed.

Definition

The Hilbert space H has the Nevanlinna-Pick property if whenever (5)
holds, there is ¢ € My with muliplier norm one satisfying (4).

There is a stronger notion called the complete Nevanlinna-Pick property
(CNPP) that asserts the analogous property for matrix-valued multipliers
mapping H ® C° to H ® C*, and for all positive integers s, t € IN.
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An extremal problem

@ There is a surprising consequence of the Nevanlinna-Pick property for
certain extremal problems. Let Z = {zj}jil and zg ¢ Z. Let fy be
the unique solution to the extremal problem

Refy(z0) = {Ref (z):f(z)) =0for1 <j<ooand |f|| <1}.
(6)
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An extremal problem

@ There is a surprising consequence of the Nevanlinna-Pick property for

certain extremal problems. Let Z = {z};”) and zy ¢ Z. Let f; be
the unique solution to the extremal problem

Refy (z0) = {Ref (z):f(z) =0for1 <j<ooand |f|| <1}.
(6)
@ Note that the solution exists and is unique because for each real t,
there is a unique element of minimal norm in the closed convex set

E;={feH:Ref(z) =t f(z))=0forl<j<ooand |[f| <1}.
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Solving the extremal problem

@ From the definition of fj we have

|Aofy (20)| = |<27\k fo>

[ele]

Z A ij

j=0

which in terms of the data ¢, = ‘ﬂok( |)‘ and §; =0for 1 <j < oocan
20

be rewritten as

2
0< || Y Ajky || —IAofo (20)]* = Yo (1—8;Em) ks (2m) AjAm.
j=0 Jm=0
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Solving the extremal problem

@ From the definition of fy we have

|A0fb 2 |— |<Z/\k fo>

which in terms of the data §, = \ﬁok(m‘)ll and ¢; =0 for 1 <j < oo can
20
be rewritten as

2
0< (Y Aky|| — Ao (20)]P = Y (1= &) ke (zm) AjAm.
Jj=0 Jj,m=0

@ Since H has the Nevanlinna-Pick property, there is ¢, € My with
norm at most one satisfying

|fo (20)]
[z |

¢y (20) =Gy = and ¢, (zj) =0 for 1 < j < c0.
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A remarkable identity

kzq (2)

p satisfies

@ Thus the function p (z) = ¢, (2)

20

VP”_'%M |\H— M Hlk IIH

and

ky (Z fo (z ks 2
Rep () = Re (g0 ) 5 ) = TR 2 = 16 =)
Z0 Z0 Z

and p (zj) =0 for 1 <j < oo.
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A remarkable identity

kzq (2)

@ Thus the function p (2) = ¢, (z) 7 satisfies
20
ks,
= feopical <10t [y <
loll = o2y | < 1ol |

and

e, (zo)> _ 1 (20)] [lknl* 1% (20)]

[z | Izl Il Az

and p(zj) =0 for 1 <j < oo.

Rep () = Re (g, (2)

@ By the uniqueness of the solution to the extremal problem (6), we
obtain the remarkable identity,

(7)
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Consequences of the remarkable identity

@ Every zero set of a function in H is included in a zero set of a
function in My Indeed, if Z = {z}7”, is the zero set of f € H, then
the extremal problem (6) has a solution provided zy ¢ Z. But then

¢y € My vanishes on Z as well.
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Consequences of the remarkable identity

@ Every zero set of a function in H is included in a zero set of a
function in My. Indeed, if Z = {Z}7Z, is the zero set of f € H, then
the extremal problem (6) has a solution provided zy ¢ Z. But then
@o € My vanishes on Z as well.

@ Every interpolating set Z for H, Definition: Rz : H — ¢? is bounded

Zj

and onto where R,f = { flz) } , is also an interpolating set for
j=1
My, Definition: R (My) = €. Note that these definitions agree

with those given earlier in the case H = D since

1 1
HkZH% i <kZYkZ>D = kZ (Z) = W nw ~ ]_+IB(O,Z)
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Equivalence of interpolating sequences for NPP spaces

Suppose H is a Hilbert function space with the Nevanlinna-Pick property.
Then a set Z is interpolating for H if and only if Z is interpolating for M.

Proof: If Z is interpolating for H, then {k;, };il is a Riesz basis,

15521 ajks; || = [[{aj}]],2, and consequently satisfies the unconditional
basic sequence condition: if |aj| < |b;|, then

< el

[ee)
Z ajks
j=1

) <C H{bj};;

<C
(hz)

i b ij
j=1

(17 e
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The proof continued

@ We seek to solve the interpolation

¢(z)=¢&, 1<j<oo

with ¢ € My of norm at most one whenever {(_fj}jiIH < 4, with
- o

6 > 0 sufficiently small.
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The proof continued

@ We seek to solve the interpolation
¢(z)=2¢;, 1<j<eo,

with ¢ € My of norm at most one whenever

(&) <o with
6>0 sufficiently small.

@ But for 6 < C we have ‘(j Aj ‘ < T| and the unconditional basic
sequence condition implies

2 2
[eS) /\ =) o . N
0< CIY |l —| LAk | = X (1=&8n) ks (2nm) 4.
: J= Jym=
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The proof continued

@ We seek to solve the interpolation
¢(z)=2¢;, 1<j<eo,

with ¢ € My of norm at most one whenever

{gf};o:le < 6, with

6>0 sufficiently small.

@ But for § < C we have ‘(;‘ Aj ‘ < T| and the unconditional basic
sequence condition implies

2 2
[} /\ (o] el _
0< C? Zf ,Z;Q)‘J 'Zl(l—é’jé‘m) ke (2m) AjAm.
: ,]: j,m:

@ The Nevanlinna-Pick property now yields the desired solution
Q< My.
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The proof continued

@ Conversely, multiplier interpolation implies that the normalized
reproducing kernels corresponding to Z are an unconditional basic
sequence: Given |b;| < |a;j|, choose ¢ € My such that b; = ¢ (z))a;
Then Magic Bullet #2 gives

Y ¢ (z)a
4

Jj=1 j H Zj H || Jj=1
- HM;) <E a;
j=1

o) kzj H

i H
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The proof continued

@ Conversely, multiplier interpolation implies that the normalized
reproducing kernels corresponding to Z are an unconditional basic
sequence: Given |b;| < |a;j|, choose ¢ € My such that b; = ¢ (z;)a;.
Then Magic Bullet #2 gives

oo 0 kz-
= ¢ (z)a H
; JHkZJHH J;. ’ JHijH
— _/\/l* - a; Zj S - 3 Zj
H ’ (; JH"zz”) L JH’%HH

oo
. . . kz: .
@ Now the following expectation calculation shows that { . } is a

Riesz basis, which is equivalent to H interpolation.
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UBS impies RB

@ To show that UBS implies RB, we use the fact that for any finite
collection of vectors {v,}"_, in a Hilbert space H there is 6 € [0, 277)

n=1
such that
N 2 N ,
Y el =Y vall®. (8)
n=1 n=1
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UBS impies RB

@ To show that UBS implies RB, we use the fact that for any finite
collection of vectors {v,,}nN:1 in a Hilbert space H there is 6 € [0, 271)

such that

N 2

Z ein@ vy

n=1

N 2
= lelvnll : (8)

@ Indeed, we simply compute the expectation,

1 27
a7 )

N

Z ein9 vy

n=1

2d9 1 27 i(mfn)QdQ
e Z <Vm, Vn> %/0 e

m,n=1

N 2
= ) llvall*

n=1

and then use the intermediate value theorem with the continuity of

N ey, in @ when N < oo.
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UBS impies RB 2

e From (8) we thus obtain

N N K 2 N 2
Z =) |[an Z
= S Tl e — 1252 anH2 L
and hence from UBS that
2 2
i ein9 k Zp
n=1 Hk ||H2 || Zn |H H2
and
2 2
i —inf inf an N in6 kZ
e (e a,,) <C Z ey n
n=1 ||kan:"/2 H?2 n=1 ||kanH2 H2
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UBS impies RB 2

e From (8) we thus obtain

9 2
i i kz,, N inGan kzn
= el I | | &z, || 2
and hence from UBS that
2 2
% eingan kzn
n=1 szn H?2 H2 Zp H2
and
2 2
N N
k . k
—/n9 Zn inf Zp
C .
Le (72 >||kzn||Hz SRl PR e o
= H?2 n= n H2

@ Now let N — oo to obtain RB.
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The classical spaces

@ For an integer m > 0, and for 0 < ¢ < o0, m+ ¢ > 1/2 the analytic
Besov-Sobolev spaces By (ID) consist of those holomorphic functions

f on the disk such that
2
dA (Z)} < oo.

(Bl « [0 o
(9)

The spaces By (ID) are independent of m and are Hilbert spaces with
inner product (f, g) given by

m—1 - g 5 2(m+o0) . —
k;o £ (0) g (0)+/D (1-12P) £m) () g (DdA (2)

N
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The classical spaces

@ For an integer m > 0, and for 0 < ¢ < o0, m+ ¢ > 1/2 the analytic
Besov-Sobolev spaces BY (ID) consist of those holomorphic functions

f on the disk such that
1
m—1 2 m 2 2
{ Lo + [ | (1-17)" @) <z>} <o
k=0 D
(9)

The spaces By (ID) are independent of m and are Hilbert spaces with
inner product (f, g) given by

Z £ (0) g™ (0) + / (1-12P) ) ) (7)) (2)dA (7).

@ The space By (D) is a Hilbert function space on ID, and has
reproducing kernel kY (w) given by

1 \20 . 1
kI (w) = <1*W?> i 0<o<3 , zeD,weD.
z LilogL_ if 0=0
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Magic Bullet #3

For0 <o < % the spaces By (ID) have the complete Nevanlinna-Pick
property (CNPP). This includes the Dirichlet space D (D) = BY (D).
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Certain spaces with NP kernel

Theorem

Suppose 0 <o <1, ZCDandpu, =Y,c7 kI (z)_% 0. Then Z is an
interpolating sequence for BY (ID) if and only if Z is an interpolating
sequence for the multiplier algebra Mpgg(py if and only if Z satisfies the
separation condition infi.; B (z;,z;) > 0 and u, is a By (ID)-Carleson
measure.

@ We invoke a theorem of B. BGe which says that for certain Hilbert
spaces with reproducing kernel, in the presence of the separation
condition, a necessary and sufficient condition for a sequence to be
interpolating is that the Grammian matrix

Ky, . . .
G= [<‘:Zl|| k’>] associated with Z is bounded.
Zj i I.,‘:].
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The Technical Property

@ The spaces to which Bée's Theorem applies are those where the
kernel has the Nevanlinna-Pick property, and which have the following
additional Technical Property. Whenever we have a sequence for
which the matrix G is bounded on £? then the matrix with absolute

Z; -
values i J is also bounded on ¢2.

ij=1
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The Technical Property

@ The spaces to which Bée's Theorem applies are those where the
kernel has the Nevanlinna-Pick property, and which have the following
additional Technical Property. Whenever we have a sequence for
which the matrix G is bounded on 2 then the matrix with absolute

values i / is also bounded on ¢2.

ij=1
@ For0< o< % the Technical Property holds because
Re(ihy) =i

— =5 |  Which insures that the Gramm matrix has
—Zjzj —Zjz;

the desired property. For o = 0 a slightly different ending will be
given to the proof.
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The Technical Property

@ The spaces to which Bée's Theorem applies are those where the
kernel has the Nevanlinna-Pick property, and which have the following
additional Technical Property. Whenever we have a sequence for
which the matrix G is bounded on 2 then the matrix with absolute

values

i / is also bounded on ¢2.

ij=1
@ For0<o <3 L the Technical Property holds because
2(7 20
Re (1 ZZ) ~~ |1_1sz_ , which insures that the Gramm matrix has
i i j L0
the desired property. For o = 0 a slightly different ending will be
given to the proof.

o Finally, the boundedness on £? of the Grammlan matrix is equivalent
top, =32 szjH =221 |zJ] )?76,, being a Carleson
measure, so matters are reduced to Boe's Theorem once we know

By (D) has the NPP.
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Boundedness of the Grammian

@ The Grammian matrix G is bounded on ¢? if and only if Uy is a
Carleson measure for H. To see this let TO:OH — /2 be the
f(z)

%

normalized restriction map Tf =

. Then yu is a Carleson

j=1
measure for H if and only if T is bounded.
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Boundedness of the Grammian

@ The Grammian matrix G is bounded on ¢2 if and only if yi is a
Carleson measure for H. To see thislet T : H — 22 be the

normalized restriction map Tf = fizj) . Then yu is a Carleson
measure for H if and only if T is bounded.

@ But T* {(jj};il = Zj’il gj)ZJH and so the matrix representation of
J

TT* relative to the standard basis {ej}jo:1 of £2 is the Grammian:

(TT e el = [<T<|;€||>ef>rjl
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Boundedness of the Grammian

@ The Grammian matrix G is bounded on ¢2 if and only if yi is a
Carleson measure for H. To see thislet T : H — 22 be the
f(z;)

Zj

normalized restriction map Tf =

. Then yu is a Carleson

j=1
measure for H if and only if T is bounded.

@ But T* {gj};il = Zj?';l CJHZJH and so the matrix representation of
J

TT* relative to the standard basis {e;}”, of 2 is the Grammian:

- [(5e)] L= K T T >] )

@ Now use that T is bounded if and only if TT* is bounded.
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Certain Besov-Sobolev spaces have the NPP

@ Agler and McCarthy showed that a reproducing kernel k has the
complete Nevanlinna-Pick property if and only if for any finite set
{z1, 2, ..., zm }, the matrix H,, of reciprocals of inner products of
reproducing kernels k,, for z;, i.e.

Hy =

m
1 ]
<kzr" kzj> ij=1 ,

has exactly one positive eigenvalue counting multiplicities.
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Certain Besov-Sobolev spaces have the NPP

@ Agler and McCarthy showed that a reproducing kernel k has the
complete Nevanlinna-Pick property if and only if for any finite set
{z1, 2, ..., zm }, the matrix H,, of reciprocals of inner products of
reproducing kernels k;, for z;, i.e.

Hn =

@,

ij=1
has exactly one positive eigenvalue counting multiplicities.
~1 : :
o Expand (k;;, k;) by the binomial theorem as

1-zz)" =1-Y o (zz)",
/=1

where 0 < ¢, = (1)1 ( 227 ) for{ >1and 0 <20 < 1.
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The proof continued

@ The matrix [z*jz,-]l'.nj:l is nonnegative semidefinite since

m

Y. 6 (Zz) 8 = (G121 Gz 2 0.

ij=1
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The proof continued

@ The matrix [?jz,-]l'."j:l is nonnegative semidefinite since

m

Y. 6 (Zz) 8 = (G121 Cmzm)|* 2 0.

ij=1

@ Thus by Schur's Theorem so is [(z*jz,-)q m , for every £ > 1, and
ij=

hence, also, so is the sum with positive coefficients.
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The proof continued

@ The matrix [?jz,-]l'."j:l is nonnegative semidefinite since

m

Y. 6 (Zz) 8 = (G121 Cmzm)|* 2 0.

ij=1

m
@ Thus by Schur’'s Theorem so is [(z*jz,-)g} - for every £ > 1, and
ij=
hence, also, so is the sum with positive coefficients.

@ Thus the positive part of the matrix Hp, is [1]]",_; which has rank 1,
and hence the sole positive eigenvalue of H, is m.
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Boe's Theorem

Theorem

Suppose H is a Hilbert space of analytic functions with a Nevanlinna-Pick
reproducing kernel k (x,y), so that H = H,. Suppose also that the
Grammian has the Technical Property: whenever {z;};”, is a sequence for
which the matrix G is bounded on (* then the matrix with absolute values
is also bounded on (*. Then a sequence Z = {z}}", is interpolating for

H if and only if Z is separated and y, = j:l szj H_ z is a Carleson
measure for H.
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Proof of Boe's Theorem

o If Z is interpolating for H, standard arguments show that Z is
separated and that y, is a Carleson measure for H.
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Proof of Boe's Theorem

e If Z is interpolating for H, standard arguments show that Z is
separated and that i, is a Carleson measure for H.

e Conversely, the Grammian matrix G is bounded on 2. To show that

—~ )
Z is interpolating for H it suffices to show that {kz,}' ! is a Riesz
J:
ks,

basis, where kz, =T ’H is the normalized reproducing kernel for H.

Let {fj};2, be the biorthogonal functions defined as the unique
minimal norm solutions of

fif = (k) =
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Proof of BT continued 2

@ If P denotes projection onto the closed linear span \/J?“’:1 kz; of the ky;,
then <an, I;va> = <f,,, I;va> = 0y, and so f, = Pf, € V32 k;. By

[ee]

Bari's Theorem, {E} . is a Riesz basis if and only if both
J:

[</€n /;mﬂm - and [(fy, fm)];, ,_; are bounded matrices on /2.

(o]

We already know that [</,<ZV kzm>} is bounded, so it remains to

m,n=1

show that [(fy, fm)]}, .y is also.
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Proof of BT continued 2

@ If P denotes projection onto the closed linear span V 21 kg of the kg,
then <an, kzm> = <f,,, kzm> = 87 and so f, = Pf, € V2 k;. By

[oe]

Bari's Theorem, {l;} . is a Riesz basis if and only if both
j_

KE l;;>]:n:1 and [(fy, fm)]5, ,_; are bounded matrices on /2.

(o]

We already know that [<l?; kzm>} . is bounded, so it remains to
show that [(f,, fm)] . _; is also. ’
° ForACZ:{zj}j:1 let Ha = {f € H:f(a) =0 for ac A}. If

ki (z) is the reproducing kernel for Ha, then HkVeHQ = k2 (w) and

KA (w) = sup{yf(w)\ L f € Hy with ||| = Hk;‘H}
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Proof of BT continued 3

o It follows that with Z, = Z\ {z,}, we have

fn (Z) _ HanH kZ" (Z), n

‘kz 2z —
Note in particular that
_ kel ke (zm)  _ fo(zm) _ O
1fall = and = = ..
|2 ‘kz ko | ke LI ol
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Proof of BT continued 3

o It follows that with Z, = Z\ {z,}, we have

(= e n2

Note in particular that
g = Bl g K ) o (em) O
kZr (kzz A kel Al il

@ We now compute the entries (f,, f,) in the biorthogonal Grammian
[(fa, fm)].n—1 in terms of the corresponding entries </;zvn /;zvm> in the

Grammian [<l?z/nl€;>ro . We have

m,n=1

kz || || k2
<fn’ fm> — H nH H mH 5 <kzZn,7’ kzme> ) (10)

2
Joe[ e
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Proof of BT continued 4

Au{a}

o Now we use that the reproducing kernels k,, for Hau(ay are given

in terms of those k/} for Hy by the formula

>

K} (2) k

AU{a o ()
ko7 (2) = kA (2) — e

w

~—
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Proof of BT continued 4

Au{a}

@ Now we use that the reproducing kernels k,, for Hau(a) are given

in terms of those k/} for Hy by the formula

K (z) ki) (a)
kA (a)

T>

k't (2) = Kk (2) —

~—

o If we set

Zmnn = Z\{zm 20} = Zo \{2m} = Zn \ {20},

we thus obtain

kom™ (2) ke (2m)

kZZ” z :kZZn’"’" z) —
" (2) R

: (11)

and the same formula with m and n interchanged.
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Proof of BT continued 5

Then we have

Zon1Z
kz m,n kz m,n .
(k2o i) = (k2w - ke by (20)
kz,"" (zn)
Z
kZ i n
— <kzZ",,, kZme,n> - Zm (Z ) <kZZn,,, kZan,n>
k2" (zn)
kzzm,n
= k2 (zp) — Zi(z)kz (z).
kznm'n (Zn)
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Proof of BT continued 6

e Now from (11) we have

ke (20) Ko™ (zm)

kzme'n (Zm)

k27 (2) = ki (z4) — = o ki (2,)

where
2
o Kk (z) KA ke (2e) K2 (2m)
m =  Zuwn - 7 =1-"7. Zpn,n - (12)
kzn' (Zn) ‘kzznm,n kzn v (Zn) kzrny (Zm)
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Proof of BT continued 6

e Now from (11) we have

ke (2,) ko (2pm)
kzzmm'" (Zm)

k27 (2) = kim (z4) — = o kEm" (2y)

where
L k() k& KZm (2,) KE™™ (2)
m= "z = a1l 4 - (12)
sz’"r” (Zn) ‘ kZan'n an’"v” (Zn) kme’" (Zm)

@ This is at most 1 since
= |(ke i) < |

by Cauchy-Schwarz.

kZm,n

kZme,n (zn) Zm

— K () K
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Proof of BT continued 7

2
o Note that szzn" 2= om kzznm'” . Combining equalities yields
z
kz™" (z
<kzZn”,kzZm’"> = kzZn" (Zm)—kazZn" (Zn) (13)
ka,"" (2n)
z
k m,n
= K (o)~ B ke (zy)
anm'” (Zn)
= K7 (2m) = Ok (20)
and ,
k, KZn
anH — H n|| and o_rrzn_ H Zn 5.
n z
‘ kZ ’ kZmn
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Proof of BT continued 7

2
@ Note that ||kzZn" 2= on kZan'” . Combining equalities yields
kzzm'n n
<kzZ,,": kzme> = kzZ,," (Zm) — Zmi(z)kzznn (zn) (13)
ke,"" (zn)
Z
kZ e n
— kZZnn( m)_ Zm (Z )Ufnkzznmn( n)
an’”'” (Zn)
= K7 (zm) — opke" (2n),
and )
ks kZn
anH — || n|| and O_I‘lm — H n 5
] ™

o Note that kZ" (zy) = 0 for m # n.
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Proof of BT continued 8

@ From the solution (7) to the extremal problem (6) with Z, , in place
of Z, and z,, in place of zy, we obtain after renormalizing ¢y,

V4
ke (2) m ks, (2)
2 — (Pn (Z) 2 (14)
[ e |

where @' € My is the unique extremal solution to

Cu,, (m,n) = inf{H(pHMH : ¢ (zm) =1and ¢ (z) =0 forj € zm,,,} |
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Proof of BT continued 8

@ From the solution (7) to the extremal problem (6) with Z, , in place
of Z, and z,, in place of zy, we obtain after renormalizing Qo

Zm n
kzm ' (Z> — pHm (Z) kzm (Z)
2 n 27
‘ [ &z,

where ¢ € My is the unique extremal solution to

(14)
kzme,n

Ciny (m,n) = inf { | @llyy, : ¢ (zm) = 1 and ¢ (z) = 0 for j € Zn,n .

@ Before turning to a bound for Cp,, (m, n), we complete the

calculation of the biorthogonal Grammian [(f,, )]} 1 _1.
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Proof of BT continued 9

The biorthogonal Grammian

For m # n we have kZ" (z,,) = 0, and hence from (10), (13) and (14) we
obtain

k|l k
<fny fm> — H zn2 H Zm” 5 {_Ulr;kzzmmn (Zn)}
KZr ‘ KZr
k||l k 2 Kk, (z
— _ H zn2 H Zm H 5 7n zzmm,n q)T (Zn) Zm ( n2>
‘ KZr ‘ KZr Kz, |
on kz,, (zn)
— _ f 2 “m _.m z Zm n
Vol G @ () T, T

= — 16l 0] (z0) (hen K )

since o = o by (12).
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Proof of BT continued 10

Generalized Blaschke products

@ Using the Nevanlinna-Pick property and the identity (1) for H, there
is a unique multiplier p = 2 = ¢, € My of norm at most one
satisfying the interpolation,

P (20) =d(z0,2) = \/1—
and moreover, it is given by,

20 (Z) _ d(Zo,Zl)ﬂ <1 . <kZov k21> kz, (Z)> . (15)

2
[(Kzo Kz, |

d¢(z) =0,
o | 11Kz

Z1
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Proof of BT continued 10

Generalized Blaschke products

@ Using the Nevanlinna-Pick property and the identity (1) for H, there
is a unique multiplier = ¢2* = ¢, € My of norm at most one
satisfying the interpolation,

Y (20)=d(2,2) = \/1—
and moreover, it is given by,
¥ @) =daa) (1= gEela ) )

<k21v k21> Kz, (Z)

o We will refer to ¢% as the generalized Blaschke function associated
to the pair of points (2, z1). It vanishes at z; and is positive at z;.
More generally, for Z = {z,} "_,, we will refer to the infinite product

2
[ (K2, kzy) |
2 2
ez 1 [ e |

B? (z H 1/]20 z) as the generalized Blaschke product in My

associated to the set Z = {z,}_; with pole at zp;¢ Z-
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Proof of BT continued 11

The Blaschke condition

Suppose H is a Hilbert space of analytic functions with a Nevanlinna-Pick
reproducing kernel k (x,y). Fix a sequence Z = {zj};il andzy & Z.
Then BY (z) is not identica/ly zero if and only if

B? ( zo H d (20, zy) 2> 0 ifand only if i, is a finite measure.

v

Indeed, if the sequence {2y} U Z is separated and the measure y, is finite,

[{kn. k)|
o eml K (1_5)v
Iz, |

I
= k@) _ 1 o)
Likrier ~ &/ km(Z)\ e (2) = Ca
n= 20 Zn n=

[ee]

BY (z)° = [T¢2 (20) H (20,2,)° > 0.
n=1
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Proof of BT continued 12

@ We now claim the inequality

Cm,, (m,n) <C, m,n> 1. (16)
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Proof of BT continued 12

@ We now claim the inequality

Cm,, (m,n) < C, m,n> 1. (16)

o Indeed, since g2 (zm) = d (zm, zj) and U (zj) = 0, the generalized
Blaschke product with pole z,, associated with Zp, p, is

By (2) = I v (o)

j¢{m,n}
= { IT d(zm,Zj)} [T d@@mz) 92 (2)
j#{m,n} j#{m,n}
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Proof of BT continued 13

Since B;’" is a multiplier of norm at most one, we then have
m,n

Cm,, (m, n)

<

IN

IN

d (zm. z;)""
jé{m.n}

-1
(ke ke, )|
H (1 Ny Em /L
jé{mn) kg | 1z 1

1
ks, ke )| )

o1 (1 )"

mzlj#m HijH2 szm”2

(Institute)
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Proof of BT continued 14

k .
I, We obtain
[kzpm ||

@ By the Carleson condition applied to /Zm =

2 o 2 >0 kzm Zj ?
=l > ] @ a0 - £ el

ke,

uniformly in m.
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Proof of BT continued 14

Kzm

, we obtain
&z

@ By the Carleson condition applied to /;; =

— 2 REINE: © |k, (z)?
kzm‘ 2/ kzm(z)‘ duy (z) =Y e FIL
2 A P |k |

C:C‘

uniformly in m.

NE
@ This together with separation, i.e. MZJHQ < 1 — ¢ for some

2
e 112

2
]‘[(1“<sz’k2m>‘nz>zc>o, m>1,

m ksl ke

e >0, yield

and hence (16).
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Completion of proof of BT

@ At this point we use (16) to conclude that |(f,, fn)| < C ‘</§n l;n>’

for all m, n.
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Completion of proof of BT

@ At this point we use (16) to conclude that |(f,, f)| < C ‘<l€; l;zvn>’
for all m, n.

@ Our hypothesis on the Grammian [</; @ﬂw shows that

m,n=1

H<IZ” /(AZ;>HOO is bounded on ¢2, and thus so is [|{f,, f) ||

m,n=1 m,n=1
hence [(fy, fm)]} ,—1- This completes the proof of Bée's Theorem.
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Completion of proof of BT

@ At this point we use (16) to conclude that |(f,, f)| < C ‘<l€; l;zvn>’

for all m, n.

@ Our hypothesis on the Grammian [<l?z; kAz;>]oo shows that

m,n=1

H<l/<:n l;;>Hoo is bounded on ¢2, and thus so is [|{f,, fu) ||

m,n=1 m,n=1
hence [(fa, fm)]}, n—1- This completes the proof of Boe's Theorem.

@ To obtain the case ¢ = % of the interpolation theorem, one can

calculate that when ¢ = 3, the expression — AR @7 (z,) factors as
a product 1 with i | < C, and then the boundedness of

(fn, fm) follows immediately from that of <l;;m /?z/n>
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An open problem

@ It is an open problem whether or not interpolating sequences for a
(even complete) Nevanlinna-Pick kernel are characterized by the
necessary conditions: separation and the Carleson condition. That the
answer is YES has been conjectured both by Seip and by Agler and

McCarthy.
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An open problem

@ It is an open problem whether or not interpolating sequences for a
(even complete) Nevanlinna-Pick kernel are characterized by the
necessary conditions: separation and the Carleson condition. That the
answer is YES has been conjectured both by Seip and by Agler and
McCarthy.

@ The above proof of Bée uses a heavy hammer at the end by taking
absolute values inside the sum and requiring the technical property of

the Grammian KE” /?/z,,>ro

m,n=
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An open problem

@ It is an open problem whether or not interpolating sequences for a
(even complete) Nevanlinna-Pick kernel are characterized by the
necessary conditions: separation and the Carleson condition. That the
answer is YES has been conjectured both by Seip and by Agler and
McCarthy.

@ The above proof of Bbe uses a heavy hammer at the end by taking
absolute values inside the sum and requiring the technical property of

the Grammian [<l€;l?z/n>}

m,n=
@ A recently posted result on the arxiv by Chalendar, Fricain and
Timotin shows that a YES answer to this problem implies the
Feichtinger Conjecture (every Bessel sequence is a finite union of
Riesz sequences) for complete Nevanlinna-Pick kernels, which speaks
to the difficulty of this problem.
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Part 4

Bilinear Hankel forms
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Hankel operators

@ Hankel operators on the Hardy space of the disk, H? (D), can be
studied as linear operators from H? (ID) to its dual space, as
conjugate linear operators from H? (ID) to itself, or, in the viewpoint
we will take here, as bilinear functionals on H? (D) x H? (ID).
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Hankel operators

@ Hankel operators on the Hardy space of the disk, H? (ID), can be
studied as linear operators from H? (ID) to its dual space, as
conjugate linear operators from H? (D) to itself, or, in the viewpoint
we will take here, as bilinear functionals on H? (D) x H? (ID).

@ In that formulation, given a holomorphic symbol function b we
consider the bilinear Hankel form, defined initially for f, g in P (D),
the space of polynomials, by

Sp(f,g):=(fg,b)y.
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Hankel operators

@ Hankel operators on the Hardy space of the disk, H? (ID), can be
studied as linear operators from H? (ID) to its dual space, as
conjugate linear operators from H? (D) to itself, or, in the viewpoint
we will take here, as bilinear functionals on H? (D) x H? (ID).

@ In that formulation, given a holomorphic symbol function b we
consider the bilinear Hankel form, defined initially for f, g in P (D),
the space of polynomials, by

S (f.g) = (fg. b)y .
@ The norm of 5 is

156l 22 = sup {15 (£ &) = 1l 12 = llgll e = 13-
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Nehari's theorem on the Hardy space

@ Nehari's classical criterion for the boundedness of S, on the Hardy
space H? can be cast in modern language using Fefferman’s duality
theorem.
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Nehari's theorem on the Hardy space

@ Nehari's classical criterion for the boundedness of S, on the Hardy
space H? can be cast in modern language using Fefferman’s duality
theorem.

@ We say a positive measure y on the disk is a Carleson measure for H?

if
1l emrey == sup{/D 12 dp: ||f] e = 1} < o0

and that b is in the space BMO if

0)|+H\b’(z (1 |22 dAH < oo

b = |b
18]l auo = 1B o
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Nehari's theorem on the Hardy space

@ Nehari's classical criterion for the boundedness of S, on the Hardy
space H? can be cast in modern language using Fefferman’s duality
theorem.

o We say a positive measure y on the disk is a Carleson measure for H?
if

2
Il caarey = S”p{/D [F12 dpe: [1Fll e = 1} =%
and that b is in the space BMO if

[Bllgwo := 16(O)| +||6/(2)]* (1= |zP)an]| , <o

@ Nehari's theorem is the equivalence ||Sp|| 2. 12 = bl gm0 -
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Dirichlet Hankel operators

@ Our main result is an analogous statement for a similar class of
bilinear forms on the Dirichlet space D (ID) = D. Recall that D is the
Hilbert space of holomorphic functions on the disk with inner product

(F.8)p = F0)60) + | F(2)E(2) dA

and normed by ||fH2D = (f,f)p.
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Dirichlet Hankel operators

@ Our main result is an analogous statement for a similar class of
bilinear forms on the Dirichlet space D (ID) = D. Recall that D is the
Hilbert space of holomorphic functions on the disk with inner product

(F.g)p = F(0)g +/ F(2)g'(2) dA,

and normed by ||f||% = (f,f)p
@ We consider a holomorphic symbol function b and define the
associated bilinear form, initially for f,g € P (D), by

Ty (f.8) = (fg, b)p
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Dirichlet Hankel operators

@ Our main result is an analogous statement for a similar class of
bilinear forms on the Dirichlet space D (ID) = D. Recall that D is the
Hilbert space of holomorphic functions on the disk with inner product

(F.g)p = F(0)g +/ F(2)g'(2) dA,

and normed by ||f||% = (f,f)p

@ We consider a holomorphic symbol function b and define the
associated bilinear form, initially for f,g € P (D), by

Th(f. g) == (fg.b)p
@ The norm of Ty is

I Tollpup = sup{|Ts (F. &)]: Ifllp = llgllp =1}
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The main theorem

We say a positive measure y on the disk is a Carleson measure for D if

Il ey = sup { [ 1 e 7l =1} <

and that the holomorphic function b is in the space X if

Bl = 60)| +[[|6(2) aa < oo

Our main result is

I Tollpxp & [Ibll
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Outline of the proof

o It is easy to see that || Tp||p.p < C||b 5.

(Institute) Interpolating sequences and bilinear Hankel fc June 20, 2011 69 / 149



Outline of the proof

o It is easy to see that || Tp||pyp < C|b] 4.

@ To obtain the other inequality we must use the boundedness of T} to
112 :
show |b’|” dA is a Carleson measure.
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Outline of the proof

o It is easy to see that || Tp||pyp < C|b] 4.

@ To obtain the other inequality we must use the boundedness of T} to
/12 :
show |b’|” dA is a Carleson measure.

@ Analysis of the capacity theoretic characterization of Carleson
measures due to Stegenga allows us to focus attention on a certain
set V in ID and the relative sizes of [, |b/'|” and the capacity of the
set V NaD.
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Outline of the proof 2

@ To compare these quantities we construct Ve, an expanded version
of the set V' which satisfies two conflicting conditions.
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Outline of the proof 2

@ To compare these quantities we construct Ve, an expanded version
of the set V' which satisfies two conflicting conditions.

@ First, Viyp is not much larger than V/, either when measured by
fVexp |b’|2 or by the capacity of the Viyp, N 9D.
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Outline of the proof 2

@ To compare these quantities we construct Ve, an expanded version
of the set V' which satisfies two conflicting conditions.

@ First, Viyp is not much larger than V/, either when measured by
fvexp |b/|* or by the capacity of the Vo, NoD.

@ Second, ]D\Vexp is well separated from V in a way that allows the
interaction of quantities supported on the two sets to be controlled.
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Outline of the proof 3

@ Once this is done we can construct a function ®, € D which is
approximately one on V' and which has ®|, approximately supported
on D\ Veyp. Using @y we build functions f and g with the property
that

To(f.g)| = [ |+ error.
%4
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Outline of the proof 3

@ Once this is done we can construct a function ®, € D which is
approximately one on V' and which has @/, approximately supported
on D\ Veyp. Using @y we build functions f and g with the property
that

To(f.g)| = [ |+ error.
%4

@ The technical estimates on ® allow us to show that the error term
is small and the boundedness of T, then gives the required control of

Iy 1b1%
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The Easy Direction of the proof

@ Suppose that y, is a D-Carleson measure. For f, g € P (ID), we
have that | T} (f, g)| is at most

£(0) T+/ [F(2) g (2) +f (2) & (2)] B/ (z)dA

(78)(0)| + 1l ( / gZdub) +lello ( J 17 dn,
D D

< C(IbO)+ I#ollp-carteson) Ifllp llgllp = CliblLx [ Fllp gl -

NI

1
2

IA
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Preliminaries of the Hard Direction

@ Setting g = 1 we obtain
[ B)p| = [To (£, 1) < [ Tol I]lp 1]l
for all polynomials f € P (D), which shows that b € D and

[bllp < C sl (17)
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Preliminaries of the Hard Direction

@ Setting g = 1 we obtain
[(F.B)p| = [To (£, D) < [ Tol I]lp 11l
for all polynomials f € P (ID), which shows that b € D and
16llp < C [ Toll- (17)

@ Let /, be the midpoint of / and z(/) = <1 — M) z be the associated

27
index point in the disk. Let /(z) to be the interval such that
z(l(z)) = z. We set T(/), the tent over / to be the convex hull of /
and z(/) and let T (z) = T (z(l)) = T (/). More generally, for any
open subset H of the circle T, we set T (H) = Ujcy T (1), called the
tent region of H in the disk ID.
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Preliminaries of the Hard Direction 2

@ To complete the proof we will show that y, = |b'|> dA is a
D-Carleson measure by verifying a condition due to Stegenga: For
any finite collection of disjoint arcs {IJ}JN:1 in the circle T we have

N N
Mo <Uj1T(Ij>> < C Capp <Ujllj> , (18)
where for open G C T in any quadrant Q,
Capg G = inf {[§]l}: 9 (0) = 0,.Reyp(2) > 1for z€ G, (19)

and in general, Capp (G) = Y. Capq (G NQ), where the sum is over
the four quadrants.
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Preliminaries of the Hard Direction 2

o To complete the proof we will show that i, = |b/|* dA is a
D-Carleson measure by verifying a condition due to Stegenga: For
any finite collection of disjoint arcs {IJ}jN:1 in the circle T we have

N N
o (Uj1T<’J')> < C Capp (Ujllj) : (18)
where for open G C T in any quadrant Q,
Capg G = inf { [} : 9 (0) = 0, Reyp(2) > 1for z€ G, (19)

and in general, Capp (G) = Y Capq (G NQ), where the sum is over
the four quadrants.
@ We have equivalence with the logarithmic capacity Capjog:

Capp (G) = Capog (G), G CT.
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Preliminaries of the Hard Direction 2

o To complete the proof we will show that i, = |b/|* dA is a
D-Carleson measure by verifying a condition due to Stegenga: For
any finite collection of disjoint arcs {IJ}jN:1 in the circle T we have

N N
o (Uj1T<’J')> < C Capp (Ujllj) : (18)
where for open G C T in any quadrant Q,
Capg G = inf { [} : 9 (0) = 0, Reyp(2) > 1for z€ G, (19)

and in general, Capp (G) = Y Capq (G NQ), where the sum is over
the four quadrants.
@ We have equivalence with the logarithmic capacity Capog:

Capp (G) = Capog (G), G CT.

@ In our proof we use functions for which equality in a tree version of
(19) is approximately attained.
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Disk blowup and capacity

@ For [ an open arc and 0 < p <1, let /¥ be the arc concentric with /
having length |/|.

Definition

For G open in T let GE, = U;c¢ T (I°) be the disk blowup (of order p) of
the open set G C T. The important feature of the disk blowup is that it
achieves a good geometric separation between G]]pD and T (G) = GHOD.

| \

Lemma

Let G be an open subset of the circle T. Then

z—wl> (1-wP)", weT(6) andzgGh

\
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Disk blowup and capacity

@ For / an open arc and 0 < p <1, let /P be the arc concentric with /
having length |/]F.

Definition

For G open in T let GE, = U;c¢ T (I°) be the disk blowup (of order p) of
the open set G C T. The important feature of the disk blowup is that it
achieves a good geometric separation between G]]pD and T (G) = GHOD.

Lemma

| N\

Let G be an open subset of the circle T. Then

z—wl> (1-wP)", weT(6) andzgGh

\

o The inequality follows from Gi = U, T (/) and
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The key asymptotic capacity estimate

@ In addition to good geometric separation, the capacity of disk blowup
is controlled by an inequality of Bishop:

Capp (Uicc!?) < G CappG. (20)
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The key asymptotic capacity estimate

@ In addition to good geometric separation, the capacity of disk blowup
is controlled by an inequality of Bishop:

Capp (Uicglf) < Gy CappG. (20)

@ We do not know if the constant C, in (20) satisfies the asymptotic

estimate,

lim C, =1. (21)
p—1~
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The key asymptotic capacity estimate

@ In addition to good geometric separation, the capacity of disk blowup
is controlled by an inequality of Bishop:

Capp (Uicglf) < Gy CappG. (20)

@ We do not know if the constant C, in (20) satisfies the asymptotic

estimate,
lim C, =1. (21)
p—17
@ It turns out that an asymptotic inequality such as (21) is the key to
our proof below, in which we require that y, (G]g\ T (G)) is small
for an appropriate "extremal" set G.
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The key asymptotic capacity estimate

@ In addition to good geometric separation, the capacity of disk blowup
is controlled by an inequality of Bishop:

Capp (Uicglf) < Gy CappG. (20)

@ We do not know if the constant C, in (20) satisfies the asymptotic
estimate,
lim C, =1. (21)
p—1”
@ It turns out that an asymptotic inequality such as (21) is the key to
our proof below, in which we require that y, (G]g\ T (G)) is small
for an appropriate "extremal" set G.

@ While (21) remains in doubt for disk blowups, it turns out to hold for
certain "tree" blowups to which we now turn.
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Tree capacities

o Consider a dyadic tree T together with the following notation.
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Tree capacities

o Consider a dyadic tree T together with the following notation.

@ If x is an element of the tree T, x~1 denotes its immediate
predecessor in T.
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Tree capacities

o Consider a dyadic tree T together with the following notation.
o If x is an element of the tree T, x~! denotes its immediate
predecessor in T.

o If z is an element of the sequence Z C T, Pz denotes its predecessor
in Z: Pz € Z is the maximum element of Z N [o, z) (we assume
o € Z for convenience).
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Tree capacities

Consider a dyadic tree T together with the following notation.

If x is an element of the tree T, x~! denotes its immediate
predecessor in T.

If z is an element of the sequence Z C T, Pz denotes its predecessor
in Z: Pz € Z is the maximum element of Z N [0, z) (we assume
o € Z for convenience).

Let Capr (E) be the tree capacity of E given by

inf{ZAf(K)zzf(o):O,f(ﬁ)zlforﬁEE}. (22)

keT
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Tree condensers

@ More generally, the capacity Capr (E, F) of the pair (E, F),
commonly known as a condenser (E, F), is given by

inf{EAf(K)2:f(oc)§Oforoc€E, f(ﬁ)ZlforﬁeF}.
keT (23)
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Tree condensers

@ More generally, the capacity Capr (E, F) of the pair (E, F),
commonly known as a condenser (E, F), is given by

inf{ZAf(K)z:f((x)SOforzer, f(,B)zlforﬁeF}.
xeT (23)

o We say that S C T is a stopping time if every pair of distinct points
in S are incomparable in T.
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Tree condensers

@ More generally, the capacity Capr (E, F) of the pair (E, F),
commonly known as a condenser (E, F), is given by

inf{ZAf(K)Q:f((x)SOforzer, f(B)>1forBeFy.
xeT

(23)
o We say that S C T is a stopping time if every pair of distinct points
in S are incomparable in T.

@ Given stopping times E, F C T we say that E > F if for every x € E
there is y € F with y < x.
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Tree condensers

@ More generally, the capacity Capr (E, F) of the pair (E, F),
commonly known as a condenser (E, F), is given by

inf{ZAf(K)Q:f((x)SOforzer, f(B)>1forBeFy.
xeT

(23)

o We say that S C T is a stopping time if every pair of distinct points
in S are incomparable in T.

@ Given stopping times E, F C T we say that E > F if for every x € E
there is y € F with y < x.

e For stopping times E > F denote by G (E, F) the union of all those
geodesics connecting a point of x € E to the point y € F lying above
it, i.e. y < x.
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Harmonic functions on trees

o Let O C T. A point x € T is in the interior of () if
x,x’l,x+,x, € ). A function H is harmonic in Q) if

H(x) = Z[H(x7) + H(xs) + H(x-)] (24)

Wl

for every point x which is interior in ().
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Harmonic functions on trees

o Let O C T. A point x € T is in the interior of () if
x,x Y x4, x_ € Q. A function H is harmonic in Q if

H(x) = S[HOT) + Hx) + HO)) (24)

for every point x which is interior in Q).
o Let Ih(x) =Y cjox h(y). If H=Ihis harmonic in (), then we have
the martingale property,

h(x) = h(x}) + h(x-), (25)

whenever x is in the interior of ().
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Harmonic functions on trees

o Let O C T. A point x € T is in the interior of () if
x,x Y x4, x_ € Q. A function H is harmonic in Q if

H(x) = S[HG) + )+ HEx)) (24)

for every point x which is interior in Q).
o Let Ih(x) =Y cjox h(y). If H= Ihis harmonic in (), then we have
the martingale property,

h(x) = h(x}) + h(x-), (25)

whenever x is in the interior of Q).

@ Here is the main theorem on condensers in trees.
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Harmonic theorem

Let T be a dyadic tree and suppose that E and F are subsets as above.

Q There is an extremal function H = Ih such that Cap(E, F) = ||h||%,.
@ The function H is harmonic on T\ (E U F).

Q If S is a stopping time in T, then Y, cs |h (k)| < 2Cap(E, F).

© The function h is positive on G (E, F), and zero elsewhere.
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Stopping time blowups

@ An analogue of the disk blowup in trees is the stopping time blowup.

Definition

Given 0 < p <1 and a stopping time W in a tree T, define the stopping
time blowup W7’i of Win T as the set of minimal tree elements in

{RPx : x € Ty}, where RPk denotes the unique element in the tree T
satisfying

< Rk <x, (26)
pd (k) < d(Rx) < pd (k) + 1.
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Stopping time blowups

@ An analogue of the disk blowup in trees is the stopping time blowup.

Definition

Given 0 < p <1 and a stopping time W in a tree T, define the stopping
time blowup W7’i of Win T as the set of minimal tree elements in

{RPx : x € Ty}, where RPk denotes the unique element in the tree T
satisfying

< Rk <x, (26)
pd (k) < d(Rx) < pd (k) + 1.

o Clearly W“T) is a stopping time in T. Note that R'x = x. The
element Rk can be thought of as the "o root of k" since in the
Bergman tree model 7, |RPx| = 27 9(R*%) x5 2=pd(x) — |x|°.
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Rotated tree capacities

@ Now let 7 be the standard Bergman tree in ID. Let 7y be the
rotation of the tree 7 by the angle 0, and let Capz, be the tree
capacity associated with 7y as in (22), and extend the definition to
open subsets G of T by defining Capz, (G) to be

inf{z Af ()% :f(0)=0, f(B)>1for pe Ty /(5)cc}.

KeTy
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Rotated tree capacities

@ Now let 7 be the standard Bergman tree in ID. Let 7y be the
rotation of the tree 7 by the angle 0, and let Capz, be the tree
capacity associated with 7y as in (22), and extend the definition to
open subsets G of T by defining Capz, (G) to be

inf{z Af(x)2:f(0) =0, F(B)>1forBeTo I(B)C G}.
ey

@ This is consistent with the definition of tree capacity of a stopping
time W in 7y in the sense that if G = U{/ (k) : k € W}, we have

Capg, (W) = Capg, ({0}, W) = Capz, (G) .
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Rotated tree capacities

@ Now let 7 be the standard Bergman tree in ID. Let 7y be the
rotation of the tree 7 by the angle 0, and let Capz, be the tree
capacity associated with 7y as in (22), and extend the definition to
open subsets G of T by defining Cap, (G) to be

inf{z Af(x)2:f(0) =0, F(B)>1forBeTo I(B)C G}.
ey

@ This is consistent with the definition of tree capacity of a stopping
time W in 7y in the sense that if G = U{/ (k) : k € W}, we have

Cap, (W) = Capr, ({0}, W) = Capr, (G).

@ When the angle 6 is not important, we will simply write 7 with the
understanding that all results have analogues with 7y in place of 7.
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Stopping times, arcs and tents

@ There are natural bijections between the following three sets of
objects:

@ stopping times W in the tree 7 ;
o T-open subsets G of the circle T;
e T-tent regions I of the disk ID.
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Stopping times, arcs and tents

@ There are natural bijections between the following three sets of
objects:

@ stopping times W in the tree 7 ;
o T-open subsets G of the circle T;
e T-tent regions I of the disk ID.

@ The bijections are given as follows. For W a stopping time in T, its
associated 7 -open set in T is the 7 -shadow
ST (W) =U{l(x):x & W} of W on the circle (this also defines
the collection of 7 -open sets). The associated 7 -tent region in D is
Tr (W) =U{T (I (x)):x € W} (this also defines the collection of
T -tent regions).
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Stopping times, arcs and tents

@ There are natural bijections between the following three sets of
objects:

@ stopping times W in the tree 7 ;
o T-open subsets G of the circle T;
e T-tent regions I of the disk ID.

@ The bijections are given as follows. For W a stopping time in T, its
associated 7 -open set in T is the 7 -shadow
STt (W) =U{l(x):x & W} of W on the circle (this also defines
the collection of 7-open sets). The associated 7 -tent region in D is
Tr (W) =U{T (I (x)):x € W} (this also defines the collection of
T -tent regions).

@ Note that for any open subset E of the circle T, there is a unique
T -open set G C E such that E \ G is at most countable. We often
informally identify the open sets E and G.
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Condenser difficulty

@ In order to simplify notation, we identify a stopping time W = Wy
with its associated 7 -shadow on the circle and its 7 -tent region in
the disk.
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Condenser difficulty

@ In order to simplify notation, we identify a stopping time W = Wy
with its associated 7 -shadow on the circle and its 7 -tent region in
the disk.

@ We now investigate the tree analogue Gg of the disk blowup G]Ip) of
an open subset G of the circle T. According to the natural bijections
above, we can view Gg as a stopping time, an open subset of the
circle, or as a 7 -tent region in the disk.
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Condenser difficulty

@ In order to simplify notation, we identify a stopping time W = Wy
with its associated 7 -shadow on the circle and its 7 -tent region in
the disk.

@ We now investigate the tree analogue Gg of the disk blowup G]]‘g of
an open subset G of the circle T. According to the natural bijections
above, we can view Gg as a stopping time, an open subset of the
circle, or as a 7 -tent region in the disk.

@ It turns out that if W is a stopping time for 7 and Z = W7p— is the
stopping time blowup of W, then there is a good estimate for the tree
capacity of Z, namely Capr ({0},2) < %Capj ({0}, W), but no
good condenser estimate of the form,

Capr (Z, W) < GyCapr ({0}, W).

(Institute) Interpolating sequences and bilinear Hankel fc June 20, 2011 84 / 149



Capacitary blowup

Thus the stopping time blowup does not lead to a useful capacity estimate
for the condenser Capr (W;, W). Instead we use a method based on a
capacitary extremal and a comparison principle. Let W be a stopping time

in 7. By Theorem 11, there is a unique extremal function H = /h such
that

H(o) = 0, (27)
H(x) = 1forxe W,
CaprW = Az,

Definition

Given a stopping time W in 7, the corresponding extremal H satisfying

(27), and 0 < p < 1, define the capacitary blowup W/ (stopping time) of
W by

Wy ={teg({o} W):H(t)>pand H(x) <pforx<t}.
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Capacitary blowup estimates

@ The capacitary blowup satisfies an estimate with constant
asymptotically equal to 1.

Capr Wg < F% Capr W.
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Capacitary blowup estimates

@ The capacitary blowup satisfies an estimate with constant
asymptotically equal to 1.

Capr Wg < F% Capr W.

@ Proof: Let HP = %H and h°? = %h where h = AH and H is the
extremal for W in (27). Then HF is a candidate for the infimum in
the definition of capacity of WY, and hence by the "comparison

principle",

— 1\° 1
Copr W < 1 = (5 ) 11 = 33 Copr .

June 20, 2011 86 /
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Tree separation

@ We also have good tree separation inherited from the stopping time
blowup W;.

Wp C Wp as open subsets of the circle or as T -tent regions in the disk.
Consequently, Capr Wp 7 CaprW.
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Tree separation

@ We also have good tree separation inherited from the stopping time
blowup W;.

Wp C Wp as open subsets of the circle or as T -tent regions in the disk.
Consequently, Capr Wp 7 CaprW.

@ Proof: The restriction of h to a geodesic is a concave function of
distance from the root, and so if 0 < z < w € W, then

o2 (1 Ga5) e G0 = G5 2 2

and this proves Wg C Wg. The inequality now follows from Lemma
14.
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A good condenser estimate

@ The capacitary blowup W;, unlike the stopping time blowup WZ,
does indeed satisfy a good condenser inequality. It suffices to obtain a
condenser inequality only for those W with small capacity.

Capr (W, @) < —4 _Capy W provided Capr W < % (1— p)2.

(1—p)°
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A good condenser estimate

@ The capacitary blowup WY, unlike the stopping time blowup qu—,
does indeed satisfy a good condenser inequality. It suffices to obtain a
condenser inequality only for those W with small capacity.

Capr (W, @) < —4 _Capy W provided Capr W < % (1— p)2.

(1-p)

o Proof: Let H be the extremal for W in (27). For t € W/ we have by
our assumption,

1
h(t) < |lhlle < VCaprW < S (1-p),
and so

H(t):H(At)—l—h(t)§p+%(1—p):—.
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Condensers continued

o If we define H (t) = ﬁ {H(t) — 1#} then H < 0 on Vv\g and

H=1on W. Thus H is a candidate for the capacity of the
condenser and so by the "comparison principle",

C. ww2) < |aflf N1
apr (W. W) < H ﬁ(g(W‘T’,W))_H (T)
2 \?. 5 4
- (1—p> HhH"'Z@):(l—pfcapTW'
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Condensers continued

o If we define H (t) = 12? {H(t) — 1#} then H < 0 on V/@ and

H=1on W. Thus H is a candidate for the capacity of the
condenser and so by the "comparison principle",

? <
2(g(wp.w))

2 \% . . 4
= (1—p> 1Al (77) ZWCE’PTW-

CapT(W,@) < HAF/

@ The disk blowups have good geometric separation properties (useful
when estimating Bergman type kernels) and the capacitary blowup
has a good condenser estimate (useful in constructing holomorphic
extremals).
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Holomorphic Approximate Extremals and Capacity

Estimates

Definition of the holomorphic approximation

@ Now we define a holomorphic approximation @ to the function H = |h
on 7; constructed in Proposition 11 using a parameter s > —1.
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Holomorphic Approximate Extremals and Capacity

Estimates

Definition of the holomorphic approximation

@ Now we define a holomorphic approximation ® to the function H = Ih
on 7; constructed in Proposition 11 using a parameter s > —1.

1*|K‘2 1+s
1—xz

@ Define an ameliorating factor by ¢, (z) = <
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Holomorphic Approximate Extremals and Capacity

Estimates

Definition of the holomorphic approximation

@ Now we define a holomorphic approximation ® to the function H = Ih
on 7; constructed in Proposition 11 using a parameter s > —1.

1— |K| >1+S

1—xz

@ Define an ameliorating factor by ¢, (z) = (

@ Define a holomorphic approximation by

o\ l+s
= Y h(®) g, (2)= Y h(x (1‘;1) . (28)

xeTq xeTq
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The difference

Note that
Y h(k)16c(2) =1 <Z h(x)5K> (z) =1h(z) = H(z),
xkeTy xk€Ty

and so the difference of the holomorphic approximation ® and the
extremal H is

D(z) = H(z) = ) h(x){p,— 15} (2). (29)

k€T

(Institute) Interpolating sequences and bilinear Hankel fc June 20, 2011



Holomorphic Approximate Extremals and Capacity

Estimates

The projection operator

@ We will also need to write @ in terms of the projection operator

2 S
T.h(z) = /D h(7) ((11;)125(1;\. (30)
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Holomorphic Approximate Extremals and Capacity

Estimates

The projection operator

@ We will also need to write @ in terms of the projection operator

T.h(z) = /D h(Q) ((11;)125(#" (30)

@ Namely, ® = I';g where

B ) 1 (1—ZK)1+S
g(g) _Kez%h( ) ’BK’ (17 ’§2>SXBK

and By is the Euclidean ball centered at x with radius ¢ (1 — |x|) for
a sufficiently small positive constant ¢ to be chosen later.

(€), (31)
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Holomorphic Approximate Extremals and Capacity

Estimates

The projection operator

@ We will also need to write @ in terms of the projection operator

T.h(z) = /D h(Q) (<11;)1>+5dA. (30)

@ Namely, ® = I';g where

= \1+s
£(0)= X h0) %‘_ﬁ’gzyx% © o

k€T

and By is the Euclidean ball centered at x with radius ¢ (1 — |x|) for
a sufficiently small positive constant ¢ to be chosen later.

@ The function ® satisfies the following estimates.
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Holomorphic Approximate Extremals and Capacity
Estimates

Theorem

Let E = {wy}, be contained in a quadrant Q, and F = {wj}, where

F = Eg. Suppose Capr (E, F) is sufficiently small, z € D and s > —1.
Then we have

|P(z) —P(wk)| < CCapr(E,F), z€ T (wk)

Re ® (wy) > ¢c>0, k>1 (32)
1 (wy)| < k=1

1 (2)] < CCopr(EF), z¢F

Furthermore, if s > —% then ® = I'sg where

g ()] dA < C Capr (E, F). (33)

v
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Proof of the Holomorphic Approximation Theorem

For s > %

@5 < [ lg @) dA < C Capr (E,F). (34

Proof of the theorem: From (29) we have

[®(2) —H(2)] < [Z]Ih(){(/’,c(z —1}|+¢Z] « (2)]
= 1(2)+1(2).

We also have that h is nonnegative and supported in Vg\ VE. We first
show that

<Zh(1c

k¢[o,z]
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Proof of the HA Theorem 2

@ For A>1 let
2
1 |x] SAk}.

1—%z

Qk—{KET:Ak1<
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Proof of the HA Theorem 2

@ For A>1 let
gA"}.

o If we choose A sufficiently close to 1, then for every k the set Q) is a
union of two disjoint stopping times for 7.

1—|x[?

1—%z

Qk:{KETZAk1<
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Proof of the HA Theorem 2

@ For A>1 let
gA"}.

o If we choose A sufficiently close to 1, then for every k the set () is a
union of two disjoint stopping times for 7.

1—|x[?

1—%z

Qk:{KET:Ak1<

@ Now we use the stopping time property 3 in Theorem 11 to obtain

Y h(x) < CCapr (E,F), k>0.

xkeQy
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Proof of the HA Theorem 2

@ For A>1 let
gA"}.

o If we choose A sufficiently close to 1, then for every k the set () is a
union of two disjoint stopping times for 7.

2
Qk:{KET:Ak1<‘11|K|

— Kz

@ Now we use the stopping time property 3 in Theorem 11 to obtain

Y h(x) < CCapr (E,F), k>0.
KGQk

@ Altogether we then have

(z)< Y Y h(x) AKF) < C Capr (E,F).
k=0 k€0
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Proof of the HA Theorem 3

e IfzeID\F, then /(z) =0 and H(z) =0 and we have
()] = [ (2) — H(2)| < I (2) < C,Capr (E. F).,

which is the fourth line in (32).
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Proof of the HA Theorem 3

o IfzeID\F, then / (z) =0 and H(z) = 0 and we have
B (2)] = @ (2) — H(2)| < 1l (2) < C,Capr (E.F),

which is the fourth line in (32).
o If z& T (wy), then for x ¢ [0, wk]| we have

‘GDK (Wk)| <C ’goK (Z)|'

and for k € [o, z] we have

2 1+s 2 1+s
9y (@) =g (w)] = |(EE0) (L=l
P Pre \Wk 1—%z 1 —Kwy

|z — w|

L—[xf*

—= S
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Proof of the HA Theorem 4

Thus for z € T (wy),

() —@(w)| < ), h(©) e (2) =@ (w)l+C Yo h(x) e, (

Ke[o,w]j‘] K¢ [o,z]
<6 ¥ oawbETan
Ke[o,w,’f] 1- |K|

< GCapr (E F),

since h (k) < C Capr (E, F) and Yciow,] ﬁ ~ P\ITIQ This proves
the first line in (32).
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Proof of the HA Theorem 5

@ Moreover, we note that for s = 0 and k € [o, wy],

1— |x|? 1— |x|? -
Re wy) =Re———— =Re————= (1 —xwy) > c > 0.
(PK( k) ]_*KWk |1—KWk‘2 ( k)
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Proof of the HA Theorem 5

@ Moreover, we note that for s = 0 and k € [o, wy],

1— |x|? 1—|x)? -
Re wg) =Re———— =Re————= (1 —xwy) > ¢c > 0.
P (Wk) " |1_EWk|2( k) >

@ A similar result holds for s > —1 provided the Bergman tree 7 is
constructed sufficiently thin depending on s.

(Institute) Interpolating sequences and bilinear Hankel fc June 20, 2011 98 /



Proof of the HA Theorem 5

@ Moreover, we note that for s = 0 and k € [o, wy],

1— |x|? 1—|x)? -
Re wg) =Re———— =Re————= (1 —xwy) > ¢c > 0.
P (Wk) " |1_EWk|2( k) >

@ A similar result holds for s > —1 provided the Bergman tree 7 is
constructed sufficiently thin depending on s.

o It then follows from Y (.1 h (k) = 1 that

Re®(wy) = ) h(x)Reg, (wi)+ ), h(x)Req, (wy)
K€ [0, wy] i [0, wi]
> ¢ Y, h(x)—C Capr(E,F)>c' >0
KGOWk]
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Proof of the HA Theorem 6

o We trivially have

D (wi)| <1 (z)+11(z) <C ), h(x)+C Capr (E,F) < C,

K€[o,wy]

and this completes the proof of (32).
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Proof of the HA Theorem 6

o We trivially have

D (wi)| <1 (2)+11(z)<C Y h(x)+C Capr (E,F) < C,

K€ [0, wy]
and this completes the proof of (32).
@ Finally we prove (33). From property 1 of Theorem 11 we obtain

= )1+s 2

2 1 (1—-2Cx
| le@raa = /}DK;Th(K)BK' (1_|€2>SXBK(€) dA

1—
- 2: | BK‘/)‘ g ‘ 25dA

kel

Q

Y |h(x)|* ~ Capr (E, F).
kel
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Comparison of tree and disk capacities

@ We can now compare the tree and disk capacities.

Let G be a finite union of arcs in the circle T. Then

Capr (G) ~ Capp (G), (35)

where Capp denotes the disk capacity.
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Comparison of tree and disk capacities

@ We can now compare the tree and disk capacities.

Let G be a finite union of arcs in the circle T. Then

Capr (G) ~ Capp (G), (35)

where Capp denotes the disk capacity.

@ Proof: We may suppose that G C QN T for some quadrant Q. The
inequality < in (35) follows easily from Theorem 17 which provides a
candidate for testing the Stegenga capacity of G.
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Comparison of tree and disk capacities

@ We can now compare the tree and disk capacities.

Let G be a finite union of arcs in the circle T. Then

Capr (G) ~ Capp (G), (35)

where Capp denotes the disk capacity.

@ Proof: We may suppose that G C QN T for some quadrant Q. The
inequality < in (35) follows easily from Theorem 17 which provides a

candidate for testing the Stegenga capacity of G.
e We take F = {o} and E = G in Theorem 17.

100 / 149
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Comparison of tree and disk capacities

@ We can now compare the tree and disk capacities.

Let G be a finite union of arcs in the circle T. Then

Capr (G) ~ Capp (G), (35)

where Capp denotes the disk capacity.

@ Proof: We may suppose that G C QN T for some quadrant Q. The
inequality < in (35) follows easily from Theorem 17 which provides a
candidate for testing the Stegenga capacity of G.

o We take F = {o} and E = G in Theorem 17.

@ Let ¢, C be the constants in Theorem 17, and suppose that
Cap(E,F) < £. Set ¥ (2) = 2 (@ (2) — @ (0)).

C
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Proof of comparison 2

@ Then ¥ (0) =0,
Re¥ (z) = %{RGCD(Z)—RG(D(O)}
> g{c—QCCap(E,F)}Zl,ZEG,

and by (34) we have

> (3 : 2 3\°
Hlip={2) lI®lp={_) CCap(EF).

Cc
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Proof of comparison 2

e Then ¥ (0) =0,
Re¥ (z) — %{Req)(z)—ReCD(O)}
> %{c—2CCap(E,F)}Zl, z€G,

and by (34) we have

> (3 2 2 3\?
[Fllp=1{=) [®lp < p C Cap(E,F).

c

@ Continuing with Lemma 16 we obtain that for G C T,

2
[¥]5 < (i) C Capr (E,F) < C CaprE = C CaprG.
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Proof of comparison 3

e Conversely, to obtain the inequality < in (35), let i € D be an
extremal function for CappG.
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Proof of comparison 3

o Conversely, to obtain the inequality £ in (35), let ¢ € D be an
extremal function for CappG.

@ Define h(o) =0 and
b(s) = (1= Ixl) [ ¥ ()] dh(2), k€ T\ (o},

where Qj, (k) is the hyperbolic cube corresponding to x in 7, and
dA (z) is invariant measure on the disk ID.
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Proof of comparison 3

o Conversely, to obtain the inequality < in (35), let i € D be an
extremal function for CappG.

@ Define h(o) =0 and
h) = (L= Ixl) [ |4 (@) dA(z). x € T\ {o}.

where Qj, () is the hyperbolic cube corresponding to x in 7, and
dA (z) is invariant measure on the disk D.

@ One easily verifies that /h (o) = 0, and

. 2
Iy = Whller = = =12 ([ @] ar(a)

k€T

< cy _/Qm ¥ (2)] dA = Clgll5.

keTq
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Proof of comparison 4

@ Moreover,

Ih(B)= Y. h(x)=Reyp(B)>c>0, for S(B) C G,
x€[o,p]
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Proof of comparison 4

@ Moreover,

= Y h(x)>Reyp(B)>c>0, for S(B) C G,

x€[o,p]

@ Indeed, if By (x, R) is the hyperbolic ball of radius R about «, then
for R large enough,

@B < ) v -y (x|

x€lo,B]
< \ P& A o |
- P -
B x€[o,p] |Bh K, 1)| By (x,1) |Bh (Kﬁlv 1)‘ JBp(k71,1
-k
< C dA
o |Bh K, 1 ’ K R Z)‘
< C Z (1—|K|)/ ¢/ ()| dA(z) =C Y h(x),
Ke Oﬁ Q(K) KE[O,m
where the final inequality is the submean value property for4v’ (z)!
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End of proof of comparison

It follows that

CaprG = inf{HHHzBZ(T) H(0) =0,ReH (k) > 1if S (x) C G}
1|17 C,..» C
< ||=lh < = [¥|lp = = CappG.
HC By(T) c P
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Asymptotic capacity estimate on the disk

@ A result of Bishop says that
Capp (uj“’:l/f) < C,Capp (UJ’-Vzllj) , (36)

for a constant C, depending only on 0 < p < 1.

(Institute) Interpolating sequences and bilinear Hankel fc June 20, 2011 105 / 149



Asymptotic capacity estimate on the disk

@ A result of Bishop says that
Capp (UJ’-VZIIJ."> < C,Capp (uj“’:l/j) , (36)

for a constant C, depending only on 0 < p < 1.

@ In the next Corollary we use the asymptotic versions of this that hold
for tree capacities, i.e (, ™\, 1 as p /" 1, given by Lemma 14.
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Asymptotic capacity estimate on the disk

@ A result of Bishop says that
Capp (UJ’-VZIIJ."> < C,Capp (uj“’:l/j) , (36)

for a constant C, depending only on 0 < p < 1.

@ In the next Corollary we use the asymptotic versions of this that hold
for tree capacities, i.e G, \,1as p /1, given by Lemma 14.

@ Let df be Lebesgue measure on T normalized to have mass one.
Abbreviate Capr, by Capy, and let Ty (E) be the Tp-tent region
corresponding to an open subset E of the circle T. Recall that
T(E)=UjceT (I). Now define M by

o Jeme(Te(E)) 8
Mo T Caps (E)dO (37)
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Proof of the Carleson measure estimate

@ The quantity M is comparable to the Carleson measure norm squared.

With M as in (37) we have ||u,

2
HDfCarleson ~M
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Proof of the Carleson measure estimate

@ The quantity M is comparable to the Carleson measure norm squared.

With M as in (37) we have ||u,

2
HDfCarleson ~M

@ Proof: Using Corollary 19 and Ty (E) C T (E), we have

T(E))do
Mo< C sup Jows (T (E))
E open CT f’]l" CaplD (E) d
T(E
= C sup M%||:ub||§)7Carleson’

E open CT Capp (E)

where the final comparison is Stegenga's theorem.
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Proof of the CE 2

e Conversely, one can verify using the argument in (40) below that for

0<p<l,
uy (T (E)) < C/T Hp (T0 (EIPD)) do
< CM/ Caps (EL) d6
T
~ CMCapp (Eﬂg)
< CMCapp (E),

where the third line uses (35) with £ and 77 () in place of G and
71, and the final inequality follows from (36).
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Proof of the CE 2

e Conversely, one can verify using the argument in (40) below that for

0<p<l,
po (TUE)) < C [y (Ta(E5)) a0
< C/\/I/ Caps (EL) dO
T
~ CMCapp (Eﬂg)
< CMCapp (E),

where the third line uses (35) with £ and 71 () in place of G and
71, and the final inequality follows from (36).

@ Thus from Stegenga's theorem we obtain

(T (E)) < CM.

2
~ su
||,MbHD7CarIeson E open CT Capp (E)
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The crucial step in the proof

@ Given 0 < 0 < 1, let G be an open set in T such that

Jr 1, (To (G)) db
[ Com (G oo =M (38)
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The crucial step in the proof

@ Given 0 < 6 < 1, let G be an open set in T such that

Jriy (To (G)) dO
1jﬂqu(}apg(G)dG 2 oM (38)

@ We need to know that yb(Vg\ Vi) is small compared to u, (Vg ).
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The crucial step in the proof

@ Given 0 < 6 < 1, let G be an open set in T such that

Jriy (To (G)) dO
1jﬂqu(}apg(G)dG 2 oM (38)

@ We need to know that yb(Vg\ Vi) is small compared to y, (Vg).

@ This is the crucial step of the proof and is the main reason we
introduced tree capacities - namely so that the asymptotic capacity
estimate holds in Lemma 15.
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The crucial step in the proof

@ Given 0 < 6 < 1, let G be an open set in T such that

Jrts (Te (G)) do
1j“TbCapg(G)dO 2 oM (38)

@ We need to know that yb(Vg\ Vi) is small compared to y, (Vg).

@ This is the crucial step of the proof and is the main reason we
introduced tree capacities - namely so that the asymptotic capacity
estimate holds in Lemma 15.

Given ¢ > 0 we can choose 6 = 6(¢) < 1 in (38) and p = B(¢) < 1 so that
for any G satisfying (38), we have with Vg = G]g and Vg = G}, = T (G),

1y (VE\ V6) <epy (V). (39)
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Proof of the crucial step

e Let G (0) = G% and Capg = Capgz;. Lemma 15 shows that
Capy (GP (0)) < p2Caps (G), for 0 <0 <27, 0 < p < 1, and if we
integrate on T we obtain

/T Capo (G (6)) dor < ;Q/T Capo (G) db.
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Proof of the crucial step

o Let GF(0) = G% and Capy = Capz,. Lemma 15 shows that
Capy (GP (0)) < p~2Capy (G), for 0 < 0 < 27w, 0 < p < 1, and if we
integrate on T we obtain

/TCapg(Gp (6)) do < p12/TCap9(G) de.

e From (37) and (38) we thus have

IN

[ (Ta (6 (@) do < M [ Capy (67 (6)) d

IN

1 a
M !/T Cape (G) df

IN

o
557 Jo o (To (6)) 6.
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Proof of the crucial step 2

It follows that
[ 15 (Ta (67 (6)\ Ta(6)) do
- /Tyb(rg(cﬂ (9)))d0'—/TVb(T9(G))d9

< (51) Lms(nacnas
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Proof of the crucial step 3

o Now with 17 = 21 halfway between p and 1,

Jfore(To(@ @D\ To(enao= [ [ dp,(z)de

> / / iy ()0 = / {/ 4o
nieenric) o) (B:2€To(GPONT(6)}
- d ,
5 /T(GH,,D)\T(G) mp (2)

since every z € T (GJ)) lies in Ty (GP (8)) for at least half of the 0's

n [0, 2m).
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Proof of the crucial step 3

@ Now with = p+1

Jor(To(G* @\ To(Gndo= [ [ duy(e)de

halfway between p and 1,

1 W
> [ d zd0:/{/ do
T JTo(GP(O)\T(G) o (2) D (270 J{pzeTy(GrONT(6)} )
1
= d ,
2/T(G]1’7))\T(G) o (2)
since every z € T (Gp)) lies in Ty (GP (6)) for at least half of the 0's
n [0,2m).

@ We may assume above that the components of G]lp) have small length
since otherwise we trivially have [ Capr(g) (G) do > ¢ > 0 and so
then

1 1 2 C 2
M< — | du, < —||bll;5 < — || Thl||”. 41
<< [duy < Iblp < Tl (41)
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Proof of the crucial step 4

e Combining the above inequalities and using p = 277 — 1, % <p<lI,
and choosing J = 77, we obtain

s (T (GB)\ T (6) 2<512—1)/Tyb<79<c

c<1—n>Aub<Te<G>>de

IN

IN

forf—‘§77<1.
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Proof of the crucial step 4

e Combining the above inequalities and using p = 277 — 1, % <p<lI,
and choosing § = 7, we obtain

m (TGBNT(6) < 2( 55 =1) [ n(Ta(6) ot

= 2<17(217_1 )/Vb Ty (G

C1=1) [ 1,(Ta(G))do

IN

for % <y <1l
e Recalling V! = T (G}) and V¢ = T (G) this becomes

iy (VE\V6) < C=1) [ 10, (To(6))d0 < € (1 =)y (Vo).

3/4 <15 <1, since Ty(G) C T (G) = Vg for all 8. Thus given
e > 0 it is possible to select § and B so that (39) holds.
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Schur Estimates and a Bilinear Operator on Trees
The Schur theorem

Let (X, ), (Y,v) and (Z,w) be measure spaces and H (x,y, z) be a
nonnegative measurable function on X X Y X Z. Define

T(fe) (0= [ Hixy2)fy)dv(y)e(z)dw(z), x X,
at least initially for nonnegative functions f,g. Then if1 < p < oo, T is
bounded from LP (v) x LP (w) to LP (u) if there are positive functions h,
k and m on X, Y and Z respectively such that
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The Schur theorem continued

| H Gy 2 k) m(2)? dv(y) deo (2) < (Ah(x))?,
for y-a.e. x € X, and

J H Gy, 2) B0 dp () < (B (y) m (2))”.

forv x w-a.e. (y,z) € Y x Z. Moreover,

T| < AB.

operator —

(Institute)
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Proof of Schur's Theorem

J TGO du ()

AN
T
N
T
X
N
y
X
<
N
-
<
e}
3
~
e}
Q.
<
<
Q.
S
~
N———

Y\ m
< ([ reranerac) (B dv<y>(ff(zz)))pc
v ()

ko m@r (1) ave

INA

>

S

o)

o
— X
N




Integral estimates

Schur’'s Theorem can be used along with the estimates

(1_’W|2)t o if ¢c<0 t>-1
/ ————dw r —Ctlog(l—\z\z) if ¢=0t>-1,.
— _|12+4t+c
D |1 —wz| G-z if ¢>0 t>-1
(42)
to prove the following Corollary which we will use later.
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Lebesgue boundedness

Define

W)
e = -l [ O o

)
SF(z) = (1—|z|2)a/D(1”)f(w)dW.

‘1 - WZ‘2+a+b

Corollary

Suppose that t € R and 1 < p < o and set

dve (z) = (1—|z]?)dA.

Then T is bounded on LP (D, dv;) if and only if S is bounded on
LP (DD, dv;) if and only if

—pa<t+1<p(b+1). (43)

v
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A Bilinear Lemma

We now apply Theorem 22 to prove a lemma about a bilinear operator
mapping 2 (A) x £? (B) to L2 (ID) where A and B are subsets of
T which are well separated.

Lemma

Suppose A and B are subsets of T, h € (%> (A) and k € (?> (B), and
% < & < 1. Suppose further that A and B satisfy the separation condition:
VK € A, v € B we have

k= > (1= |y (44)
Then the bilinear map of (h, k) to functions on the disk given by
(1= [x[*)*Fs (1= |yt
T(h,b*)(z)z(Zh(K) Zb*(’Y)f
keEA 11— KZ’2+S veB |1— ’YZ’HS

is bounded from (? (A) x ¢? (B) to L? (D).
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Proof of the Bilinear Lemma

o We will verify the hypotheses of the previous theorem. The kernel
function here is

2 2
(1—[x[) (1= [y[)H
2+s |1_72|1+5

H(z,x,v) = ,zeD,ke A vyeB,

|1 — %z

with Lebesgue measure on ID, and counting measure on A and B.
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Proof of the Bilinear Lemma

o We will verify the hypotheses of the previous theorem. The kernel
function here is

2 2
(1= &) (1 =]y )
2+s |1_72|1+s

H(z,x,v) = ,zeD,xe A yeB,

|1 — %z

with Lebesgue measure on ID, and counting measure on A and B.
@ We will take as Schur functions

h@) = (1-12R) k() = (1= 16) " and m(n) = (1= ),

on D, A and B respectively, where ¢ > 0 will be chosen sufficiently
small later.
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Proof of the BL 2

We must then verify

e o (5

1
. = <A(1-l2P) " @)
keAyeB ‘1__KZF+S ‘1__72P+s

for z € D, and

dA  (46)

1+s 1+s
2 2
/-(1—wx|) (1-1P) (- F)‘é
— | Z
D |1—EZ|2+S |1_72|l+5

1

<8 (1-x?)" (1=,

fork € Aand v € B.
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Proof of the BL 3

@ To prove (45) we write

3+s l4e+s
(1=1?)" (1=1P)

L)

keA~veB ‘I*KZ‘QH |1*72‘1+S
345 1+e+s
r (1-1xP)’ r (1= 1P)
keA |1*KZ|2Jrs YyEB ‘1*72‘1+5
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Proof of the BL 3

e To prove (45) we write

3+s 1+ets
(1=1P)" (1= 1P)

L)

keAyeB ‘I_KZ‘HS |1_72‘1+s

3+ 1+e+
- (o) (o)
keA |1_fz|2+s yeB |1_7Z|1Jrs

@ Then from (42) we obtain (45):

3+s —3+s
Z<1_|K|2>2 < C/]D<1_|W‘2> 2 dw<C(1—]z[2>%

ieh 1w L-wz T
o\ LFets 5\ —1ltets
(1-1P) | (1-er)
766 |1_72’1+S - éev(; 1_52’1+S —
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Proof of the BL 4

@ The proof of (46) will use separation (44).
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Proof of the BL 4

@ The proof of (46) will use separation (44).

@ We have

1— % 2T 11— A tts
v

e

lz—y*|<1=|7[*  1-|yf<|z—y*|<E[x—1]

+ / + / + / ..dA
lz—x*|<1—|k[>  1-|x[’<|z—x*|<i|xk—qy| |z=7*L|z=x*[=]x=7]

= [I+1+1+1V+V.
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Proof of the BL 5

By (44) |x — | > (1 — |’y|2>a and so
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Proof of the BL 6

and similarly

PO L B L A N G

|K—')/|2+S |z_,Y*|1+S

Nof—=

dA

1= |y <lz—*|<h =]

Q

1+ 3
(1=1P) " (1= 1)’ < W)é (- Mz)z(u)_

(Institute) Interpolating sequences and bilinear Hankel fc June 20, 2011 124 /



Proof of the BL 7

o
Continuing to use |k — y| > (1 - |'y|2> we obtain

3 s
I ~ (1 - K222§/1|1+572>1+ c (1 - ’K’2>; (1 B ‘7’2>(1+s)(1—a) |

and similarly,
1
V< (1-x?)" (1-]P)

for some ¢ > 0.

June 20, 2011 125 / 149
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Proof of the BL 8

Finally

v o~ / (1= 1) (1= 1P)" o)

ek |2Fs x| lts
|z — x| |z — 7]

|z—7*|,|z—x*|>|x—7]|

R ()

|K_,y|%+2s
1

< C (1 - Wz)z (1 B ’7’2>(1+5)(1—zx) |
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Proof of the Main Result: discussion

@ To complete the proof of our main result, we will show that y, is a
D-Carleson measure by verifying Stegenga’s condition (18); that is,
we will show that for any finite collection of disjoint arcs {IJ}JN:1 in
the circle T we have

. N . N
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Proof of the Main Result: discussion

@ To complete the proof of our main result, we will show that y, is a
D-Carleson measure by verifying Stegenga’s condition (18); that is,
we will show that for any finite collection of disjoint arcs {IJ}JN:1 in
the circle T we have

N N
K (Uj—lT(/j>> < C Capp (Uj—1’j> :

@ In fact we will see that it suffices to verify this for the sets
N

G = U,_4; described in (38) that are near extremals for (37). We
will prove the inequality

1y (Vo) < C || To|” Capp (G). (47)
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Proof discussion continued

@ Once we have this, Corollary 19 yields

_fTP‘b(TG(G))d‘7< 1y (Vo)

V= J1 Capo (G)do — [ Capy (G) dor

< CIITs|.
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Proof discussion continued

@ Once we have this, Corollary 19 yields

_fer‘b(T0<G))d0< 1y (Vo)

M= J1 Capy (G)do — [ Capg (G) dor

< C|| Tyl

e By Corollary 20 HVbH%—Car/eson ~ M which then completes the proof
of Theorem 8.
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Proof of the Main Result

@ We now turn to the proof of the estimate (47). Let
1 < B <P, <7 <a<1to befixed later. Let G be an open subset

of the circle T satisfying (38) with € > 0 to be chosen below. Let 7°
be a Bergman tree.

(Institute)

Interpolating sequences and bilinear Hankel fc June 20, 2011 129 / 149



Proof of the Main Result

@ We now turn to the proof of the estimate (47). Let
I < B < B, <v<a<1tobe fixed later. Let G be an open subset
of the circle T satisfying (38) with € > 0 to be chosen below. Let 7
be a Bergman tree.

@ We define in succession the following regions in the disk,

Vo = T7(G), Vi=Gp,

v
o

B
Ve o= (V& VE= (VDb
so that Vj is the 7-tent associated with G, V¢ is a disk blowup of G,
Vg is a 7 -capacitary blowup of V&, and Vg is a disk blowup of Vg.
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Proof of the Main Result

@ We now turn to the proof of the estimate (47). Let
I < B < B, <v<a<1tobe fixed later. Let G be an open subset
of the circle T satisfying (38) with € > 0 to be chosen below. Let 7
be a Bergman tree.

@ We define in succession the following regions in the disk,

Vo = T7(G), Vi=Gp,

il B
Vi = (VO V= (Vb
so that V( is the 7-tent associated with G, Vg is a disk blowup of G,
Vg is a T-capacitary blowup of V¢, and Vg is a disk blowup of Vg.
@ Using the natural bijections introduced above, we write
Ve = {wy}, and V& = {w}, and VI = {w]}, and V£ = {Wf}k
(48)

with wy, wy, WZ, Wf € 7. Following previous notation we write
E:VgandF:Vg.
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Proof of the Main Result 3

@ We will obtain our estimate (47) by using the boundedness of Tj on
certain functions f and g in D. The function f will be approximately
b’)(VG, and the function g will be constructed using an approximate
extremal function and will be approximately equal to .
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Proof of the Main Result 3

@ We will obtain our estimate (47) by using the boundedness of Tj on
certain functions f and g in D. The function f will be approximately
b’XVG, and the function g will be constructed using an approximate
extremal function and will be approximately equal to .

@ Now define ® as in (28) above, so that we have the estimates in
Proposition 17 and Corollary 18. From Corollary 19 and (36) we
obtain

Capr (E,F) < CCappG. (49)
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Proof of the Main Result 3

@ We will obtain our estimate (47) by using the boundedness of Tj on
certain functions f and g in D. The function f will be approximately
b’XVG, and the function g will be constructed using an approximate
extremal function and will be approximately equal to .

@ Now define ® as in (28) above, so that we have the estimates in
Proposition 17 and Corollary 18. From Corollary 19 and (36) we
obtain

Capr (E,F) < CCappG. (49)

e We will use g = ®? and

1 /
@) =1 (gt ©) @ (50

as our test functions in the bilinear inequality

1 To (F.8)| < I Toll Ifllp llgllp- (51)
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Proof of the Main Result 4

e From (50) we have

_ [ @A) dA
f(Z) _/VG (1*ZZ)1+S (1_|_S)Z

(Institute) Interpolating sequences and bilinear Hankel fc June 20, 2011 131 / 149



Proof of the Main Result 4

e From (50) we have

_ [ P@a—[gP)c dA
f(z)_/vc 1-22)"" (1+9)7

@ Thus
Lo b () (1—|¢°)
i) = f, AL
o b () (1—|g°)®
= b (2) /]D\VG e dA

= b (2)+Ab (2),

by the reproducing property of the generalized Bergman kernels
(1-1gP)”

(1722)2+5 ' and
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Proof of the Main Result 5

@ where

Py b Q) (1121’
AV (z) = /D P AL (52)
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Proof of the Main Result 5

@ where

== [ SIS )

e Now if we plug f and g = ®? as above in T}, (f, g) we obtain
Ty (f.g) = Tp (f,P?) = Tp (fP, P) which we analyze as

/{f’ 2)+2f (2) @ (2)} @ (2) B (2)dA+ f (0) @ (0)°
= f(0)®(0 +/|b/z\<1>z
+2/ YAE dA+/ Ab (2) B (2)® (2)? dA

)+ (3) + (4).
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Proof of the Main Result 6

@ Trivially, we have

[(1)] < C|Ibllp Capr (E,F) < C||Ty|* Capr (E,F).  (54)
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Proof of the Main Result 6

o Trivially, we have
()] < Cb||p Capr (E,F) < C||To||* Capr (E.F).  (54)
@ Now we write

(2) = /H;‘b/(z)fcb(z)sz (55)

- /VG+'/V5\VG+/HD\V€} ’bl (Z)’2¢(Z)2 dA
= (24) +(28) + (2¢)-
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Proof of the Main Result 7

@ The main term (2A) satisfies
2a) = my(Ve)+ [ B ()] (@) ~1)aA  (56)

= 1y(Ve)+0 (Hnu Cap (E.F)).
by (32) and (17).
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Proof of the Main Result 7

@ The main term (2A) satisfies
Ca) = (Vo) + [ B ()] (@) ~1)aA  (56)

= 1y (V6)+0 (unu Cap (E.F)).

by (32) and (17).
@ For term (2B) we use (39) to obtain

126)] < Cny (VE\ Vo) < Cemy (Vo). (57)
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Proof of the Main Result 7

@ The main term (2A) satisfies
Ca) = (Vo) + [ B ()] (@) ~1)aA  (56)

= 1y (V6)+0 (unu Cap (E.F)).

by (32) and (17).
e For term (2B) we use (39) to obtain

126)] < Cny (VE\ Vo) < Cemy (Vo). (57)
@ Using (32) once more, we see that term (2C) satisfies
20)] < / LB () (CuppCapr (E.F))*dA  (58)
D\V{
< C||To|l* Capr (E. F).
(Institute)
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Proof of the Main Result 8

o Altogether, using (54), (55), (56), (57) and (58) in (53) we have
n (V) < [To(r. @)+ C, (VA ) (59
+C || To||* Capr (E.F) +|(3)] +1(4)]
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Proof of the Main Result 8

o Altogether, using (54), (55), (56), (57) and (58) in (53) we have
n(Ve) < [Ty (£,9)] + Cuy (VA Vo) (59
+C || To||* Capr (E.F) +|(3)] +|(4)]
@ We estimate (3) using Cauchy-Schwarz with ¢ > 0 small as follows:

@) < 2 [0@)b ()| ()7 (2)] A

/ 2 C / 2
< s'/]D]q)(z)b (2)| dA+z/]D/<I> (2) F (2)]* dA
(34) + (3s).
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Proof of the Main Result 8

o Altogether, using (54), (55), (56), (57) and (58) in (53) we have
my(Ve) < |Th (f'®2)|+cﬂb <V5\VG> (59)
+C || To* Capr (E. F) +|(3)] + |(4)] -

@ We estimate (3) using Cauchy-Schwarz with ¢ > 0 small as follows:
@ < 2f 2@ @)]|0(2)f(2)] dA
C 2
< ® () (2) dA+ [ |0(2)F (2)] da
< e [e@p@Paa+ s [ 0@ ()
= (34)+ (38).

@ Using the decomposition and argument surrounding term (2) we

obtain
1(3) {/VG /V - /D\Vﬁ} @ (2) b (2) dA (60)
< Ce(p, (Vo) + C | Ty|” Capy (£, F)-

IN
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Proof of the Main Result 9

To estimate term (35) we use

@l < | (Gt ©) @
1-1g)?)
/vc(lgzlzsb’(OdA
1_‘ ‘2 1+s
N veTiNV, <’1_’:Z|2+5/37|b1 @] <1_|€’2> A (¢)
_ (k)™
B yeT1NVg |1_72|1+S (7).
where
L rwis B 1B @F (1-1e7) ar@ = [, 1# ©F o
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Proof of the Main Result 10

@ We now use the separation of ID \ V¢ and V. The facts that
A=supp(h) CID\ V& and B=T1NV; C Vg, together with
Lemma 10, insure that (44) is satisfied.
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Proof of the Main Result 10

e We now use the separation of ID \ V¢ and V. The facts that
A =supp(h) CID\ V¢ and B=T; N Vs C Vg, together with
Lemma 10, insure that (44) is satisfied.

@ Hence we can use Lemma 25 and the representation of ® in 28 to
continue with

(3e) = [ |@'(2) <z>\2dASC<ZAh<K>2>(Zb*wf).

yeB
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Proof of the Main Result 10

e We now use the separation of ID \ V¢ and V. The facts that
A =supp(h) CID\ V¢ and B=T; N Vs C Vg, together with
Lemma 10, insure that (44) is satisfied.

@ Hence we can use Lemma 25 and the representation of & in 28 to
continue with

(38) /|<I>’ V)PdAa< [ Y hw?) | T b (1)? ],
kEA yeB

@ We also have from (17) and Corollary 18 that

(Z h(K)2> (Z b* (7)2> < CCap (E,F) || To||*.

keA veB
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Proof of the Main Result 11

o Altogether we then have
(38) < C Capr (E,F) || Ts|*, (61)

and thus also

@) <e [ ¥ @ +CITolP Copr (EF). (62)
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Proof of the Main Result 11

o Altogether we then have
(38) < C Capr (E.F) || To|*, (61)

and thus also
@) <e [ |6 @F+CITl Copr (E.F).  (62)
G
@ We begin our estimate of term (4) by

@ = | [ A @V @0 (63

< JLw@e@Pa[ 1ar @ e e

where the first factor is /1 (34).
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Proof of the Main Result 12

@ Now we claim the following estimate for (44) = HqDAb’HLz(D):

(40) = /H'D|q>(z)Ab’(z)y2dA (64)
< Cuy (VE\Ve) +C|ITsl* Capr (E.F)  (65)
< eu, (Vo) + C||To|* Capr (E. F).
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Proof of the Main Result 12

@ Now we claim the following estimate for (44) = [[PAD'[| 2(p):

(44)

/D @ (2) AB (2)]? dA (64)

IN

Cry (VE\ Vo) + CIITs|l* Copr (E.F)  (65)
< e, (Vo) + C|| Toll? Capr (E.F).

@ Indeed, the second inequality follows from (39), so we now turn to
the first inequality.
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Proof of the Main Result 13

From (52) we obtain

(42) = [ |o@)P dA

Q)AL
{/vé\vc+/na\v£} (1_5)2+s

6" () (1 —[2])*
C/]D|<I>(z)|2 (/Vg\vc P dA) dA

+C [jo)P /]D\VG HOONCT 1)

(1-¢2)
= (4aa) + (448).

IA

dA
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Proof of the Main Result 14

@ Corollary 24 shows that

|(4aa)] < /]D </\./ﬁ\vc ]b’|(1C)_(€1z|2JE|) dA) JA

G

/ 2 o B
C vg\vglb () dA = Cp, (VE\ V).
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Proof of the Main Result 14

@ Corollary 24 shows that

2
b (D)1 —12])°
o (o, O )

/ 2 - B
[, @I 81— o (v ve).

[(444)]

VAN

@ We write the second integral as

wae) = { [+ [0

= (4aBa)+ (44BB).

2
dA

[ reasiy,
JD\VE

= \2+s

(1-C2)
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Proof of the Main Result 15

o By Corollary 24 again,

(4a88)| < CCapT(E,F)2/D!b’(€)|2dA
< C||Tp||? Capr (E, F)?
< C||Ty|? Capr (E, F).
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Proof of the Main Result 15

o By Corollary 24 again,

C Capr (E, F)2/]D]b’ Q)| da

<
< C||Ts|f* Capr (E, F)?
< C|Ts|? Capr (E, F).

|(4488)]

e Finally, with B < B, < < a < 1, Corollary 24 shows that the term
(4apa) satisfies the following estimate. Recall that Vg = UJZ and

w! =z (J]). Weset Ay = {k ) C Jfl} and define £ (k) by the

condition k € Ay (). Then using the geometric separation of D\ Vg
and V! in Lemma 10, we complete the proof of (64) as follows:
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Proof of the Main Result 16

2
5 @102’
sl < €, (/D\Vg R dA> "

ex [ (2L )

2
()| (1 —2])° )
= C = —dA| dA
;‘Jf(lk) /JZ< 1w |

Q

‘131
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Proof of the Main Result 17

ZkeA[ J b’ 1-—
~ cy Deend \/ﬂl (/D\Vﬁ| ‘< Ol ‘H@) dA) »

7 J:BI ]__
/
Vet \/D\Vg ‘1— z‘
(r=B1)
< c|vﬁ1 CNIBlIZ < C | Ty|12 Capr (EL F).
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Proof of the Main Result 18

Now we can estimate term (4) by
@l = | [ A @V @@ (66)

< \//D|b’(z)<D(z)|2dA\//D|Ab’(z)CI>(z)|2dA
\/ (3a)/ €4/ (44) (67)
\ Cty (Vo) + C I Tol? Capr (E. F)

x\/ety (Vo) + C || Ty|l? Capr (E, F)

Ve, (Ve) + Cy/iy (Vo) I TolPP Capr (E. F)

+C || Ts|* Capr (E. F),

IN

IN

VAN

using (64) and the estimate (60) for (34) already proved above.

(Institute) Interpolating sequences and bilinear Hankel fc June 20, 2011 145 / 149



Proof of the Main Result 19

e Finally, we estimate T}, (f, ®?) = T, (f®, ®)by

[T (FD, @) < [[To|[ [ ®[|p |Dfllp < Cl[Thl[ \/ Capr (E, F) [|PFf|p .

(Institute) Interpolating sequences and bilinear Hankel fc June 20, 2011 146 / 149



Proof of the Main Result 19

e Finally, we estimate T, (f,q)z) = Tp (fD, P)by

T (f®, @) < [ Th [ |P]lp [®Fllp < C[Toll /) Capr (E. F) [[@f]lp -

@ Now
|ofl3 < € [1o/@)f () da+C [|o@)f ()]
< C|3A|+C\3B|+C/}@(Z)Ab’(z);2dA

< Cpy(Ve) + C || Tol|” Capr (E. F),
by (64) and the estimates (60) and (61) for (34) and (3g).
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Proof of the Main Result 19

e Finally, we estimate T, (f,CI>2) = Tp (fD, P)by

T (f®, @) < [ Th [ |P]lp [®Fllp < C[Toll /) Capr (E. F) [[@f]lp -

@ Now
|ofl3 < € [1o/ @) () da+C [|o@)f ()] dn
< C|3A]+C]3B]+C/|<D(2)Ab’(z)|2dA

< Cpy(Ve) + C || Tol|” Capr (E. F),

by (64) and the estimates (60) and (61) for (34) and (35).
@ When we plug this into the previous estimate we get that
}Tb (f,CIDQ)‘ is at most

CIIToll\/Capr (E. F)\/y (V) + 1| Tsll? Capr (E.F) (68)

= C\/HTbH2 Capr (E, F)(y/1y (Vo) + | To|l Capr (E, F)?).

(Institute) Interpolating sequences and bilinear Hankel fc June 20, 2011 146 / 149



Proof of the Main Result 20

@ Using Proposition 21 and the estimates (62), (66) and (68) in (59)

we obtain

y (V) < Ve, (Vo) + C | To|> Cap (E, F)
+C\/ Tl Cap (B, F)r 1, (Vo)
< Ve, (Ve) + C || Tol> Cap (E. F).
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Proof of the Main Result 20

@ Using Proposition 21 and the estimates (62), (66) and (68) in (59)
we obtain

iy (Vo) < Ve, (Vo) +ClITsl* Cap (E. F)

+C\/ I TolP Cap (E. F)y/1, (Vo)
< Ve, (Ve) + C || Tol> Cap (E. F).

@ Absorbing the first term on the right side, and using (49), we finally
obtain

iy (V) < CI|Ty|)* Capr (E,F) < C|| To|* CappG,

which is (47).
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An open problem

@ The theorem for the Hilbert space 'H = D proved above is similar in
many respects to the result of Maz'ya and Verbitsky on Schrédinger
forms on the Sobolev space H = W2, not involving function theory
at all: Let @ be a complex-valued distribution on IR”, n > 3.Then

/ u(x)v(x)Q (x)dx
IRI)
holds if and only if @ = divI where

o JuGOP I () ax S [Vl

SVl [Vvlle,
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An open problem

@ The theorem for the Hilbert space 'H = D proved above is similar in
many respects to the result of Maz'ya and Verbitsky on Schrédinger
forms on the Sobolev space H = W2, not involving function theory
at all: Let @ be a complex-valued distribution on IR”, n > 3.Then

/ u(x)v(x)Q (x)dx
R"
holds if and only if @ = divI where

o JuGOP I P ax S [ Vulfs.

@ |t is fascinating that although there is a great deal of variety in the
techniques used in the two proofs, there is a surprising similarity in
the answers obtained. The answer, quite generally, is that for some
differential operator ®, |Db|* can be used to define a Carleson
measure for H.

SVl [Vvll,
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An open problem

@ The theorem for the Hilbert space 'H = D proved above is similar in
many respects to the result of Maz'ya and Verbitsky on Schrédinger
forms on the Sobolev space H = W2, not involving function theory
at all: Let @ be a complex-valued distribution on IR”, n > 3.Then

/ u(x)v(x)Q (x)dx
R"
holds if and only if @ = divI where

o JuGOP I P ax S [ Vulfs.

@ It is fascinating that although there is a great deal of variety in the
techniques used in the two proofs, there is a surprising similarity in
the answers obtained. The answer, quite generally, is that for some
differential operator ©, ]@b[2 can be used to define a Carleson
measure for H.

@ What specific connections are there?

SVl [Vvll,
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THE
END
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