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Talk 4

Zero Sets
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What are the zero sets?

What are the zero sets of functions in D?

Given Z ⊂ D ∃?f ∈ D \ {0} f |Z = 0.

There is no complete description, I will describe some specific results.

Perhaps the most noteworthy thing is the variety of tools used.
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The Hardy Space Results

As background we recall the results for H2

Interior zero sets: Z = {zi} ⊂ D is a zero set if and only if it satisfies
the Blaschke condition ∑(1− |zi |2) < ∞.
Boundary zero sets: The boundary function f (e iθ) is, in general, only
defined a.e.so some care must be taken in formulating the question.
If E is a closed subset of the boundary and |E | = 0 then there is a
function in the disk algebra, and hence in H2, that vanishes precisely
on E .
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General Results

Consider the set Z = {zi} =
{
rne iθn

}
⊂ D which might satisfy

∑ (1− ri ) < ∞. (Bl)

∑ |log(1− ri )|−1+ε < ∞. (Aε)

Because D ⊂ H2 condition (Bl) is necessary for Z to be a zero set.
Carleson (1952): If (Aε) holds for some ε > 0 then for every choice of
{θn} , Z is a zero set. For no ε < 0 does the condition (Aε) suffi ce to
insure that Z is a zero set for every choice of {θn} .
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Shapiro-Shields (1962): If (Aε) holds for ε = 0 then Z is a zero set
for any choice of {θn}. That is the best possible condition depending
only on the {rn} .

Proof discussion: Recall that mzi0(z) is the multiplier which is zero at
zi and maximal at the origin. Consider the product P(z) = ∏i mzi0(z).
(If we solve the Hardy space version of the multiplier extremal problem
used to define mzi0(z) we obtain an individual Blaschke factor. Thus
P(z) can be viewed as a "generalized Blaschke product".)
Because each individual factor has modulus at most one the product
either converges to a holomorphic function with zeros at exactly {zi}
or diverges to the function which is identically zero. Because the
factors have multiplier norm one the product will be a multiplier and
hence, in particular, in the Dirichlet space.
We test which case holds by evaluating at z = 0. We find that we have
convergence if P(0) = ∏ δ(0, zi ) > 0, or, equivalently, if (Aε) holds for
ε = 0.
This is not an alternative to the SS proof, it is a recasting of their
proof in convenient (for us) language.
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Nagel-Rudin-Shapiro (1982): If Z fails to satisfy (Aε) for ε = 0 then
there is a choice of {θn} for which

{
rje iθj

}
is not a zero set.

Proof discussion: Because the series diverges it is possible to chose
the {θn} so that each approach region, NRS(e iθ), contains infinitely
many of the {zn} . The NRS theorem insures that, for a.e. θ, the
boundary function f (ei θ) can be obtained by taking the limit through
NRS(e iθ). Hence if f vanishes at all the {zn} then it must have
f (e iθ) = 0 a.e. and hence must be the zero function.
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Sets With a Single Accumulation Point

Some effort has been spent trying to understand the, presumable easier,
special case where Z only has one accumulation point;

Z̄ ∩T = {1} (SAP)

If Z is in a single radius, say the positive real axis, (Bl) is also
suffi cient. Proof: BZ (z)(1− z)2 ∈ D.
The same formula also covers the case of Z which satisfies (Bl) and
(SAP) and lies in a nontangential approach region.

Caughran (1969): There is a Z which satisfies (Bl) and (SAP) which
is not a zero set
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Richter-Ross-Sundberg (2004): If Z fails to satisfy (Aε) for ε = 0
then there is a choice of {θn} for which Z =

{
rne iθn

}
satisfies (SAP)

and is not a zero set.
Discussion: The proof is a "bare hands" classical function theory
proof. RRS prove a Lemma which is a quantitative version of the fact
that, for a holomorphic function f defined on B,
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these three statements can’t all be true:

1 f has a zero near the boundary of B; f (ia) = 0 for some small a > 0,
2 f has limited oscillation on B;

∫
B |f ′|

2 is small, and
3 f stays away from 0 on the boundary of B;−

∫
I 0∧ log |f | is small.

If g has zeros as indicated in the picture, one in each box, then, by
the Lemma, either 2. is violated infinitely often which forces
D(g) = ∞ and thus g /∈ D; or 3. is violated infinitely often which
forces (log) to be violated and g to be identically zero.
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Mashreghi and Shabankhah (2009): However, if Z satisfies (SAP)
and stays inside a region quantitatively smaller than NRS(1) then Z is
a zero set.

y = exp (−1/ |x |) , y = exp
(
−1/ |x |.95

)
(Bl) + in yellow =⇒ zero set
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Let’s do this on the halfplane. Suppose yn = n−1−β for some β > 0
and the zeros are located where the curve has height yn

Location of Zeros

(The general case is not much different from this example.) Thus

zn = xn + iyn =
(

1
(1+ β) log n

)1/.95

+ i
1

n1+β
.

We want to know if we can find a function f in D with that zero set,
Z . We would have f = cBf Sf Of . By the comments after Carleson’s
formula we see Of ∈ D. From that formula we also see that if f
works then so does the modification with cBf Sf replaced by BZ
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We are reduced to the following question: Z is given. Consider
dνZ (θ) = ∑Pzi (e

iθ)dθ, an infinite positive measure which is locally
finite except at z = 1. As suggested by the picture, there is not much
overlap between the mass associated with different Pzi .

The density for dνZ

We want to find an outer function F ∈ D so that∫
T
|F |2 dνZ (θ) < ∞

As the picture suggests,∫
T
|F |2 dνZ (θ) ∼∑ |F (xn)|2
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There is now a tension between two constraints. If we make |F |2 very
small everywhere near the origin then we are in danger of violating
(log). On the other hand if we make |F |2 small only on the primary
support of νZ and, say, |F |2 = 1 otherwise, then we will make |F |
very rough and perhaps generate a large derivative on the interior,
taking us out of the Dirichlet space. Because the interior values of F
are given by the formula (in the disk case)

F (z) = exp
{
1
2π

∫
T

e it + z
e it − z log

∣∣F (e it)∣∣ dt} ,
the interior oscillation of F (z) is hard to analyze precisely; |F ′(z)| is
related to

∣∣F (e it)∣∣ in a complicated nonlinear way. In fact there is no
satisfactory systematic approach to showing F ∈ D.
If we are willing to make |F | smooth then we can avoid the second
problem; it is a theorem of Carleson and Jacobs [?] that if

∣∣F (e it)∣∣ is
smooth then the outer function F (z) will extend to be smooth on the
closed disk, and hence will automatically be in D. This approach
costs us flexibility and almost certainly prevents us from getting an
optimal result, however it does leave room for a positive result.
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Suppose we define F near the origin by |F (x)|2 = exp(−1/ |x |.95)
and have it smooth and bounded elsewhere. We have∫

T
|F |2 dνZ (θ) ∼ ∑ |F (xn)|2

∼ ∑ exp
(
−1/ |xn |.95

)
= ∑ exp

((
log

1
n1+β

).95)1/.95

= ∑
1

n1+β
< ∞.

Our other constraint is (log):∫
0

∣∣∣log |F |2∣∣∣ ∼ ∫
0

1

|x |.95
< ∞.

We are OK!
Trying to work with the NRS region rather than the yellow one would
lead to trying to use the previous argument with .95 replaced by 1 in
which case the argument fails.
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Inside and Outside

The Dirichlet space sits inside the Hardy space H2 and contains the
space A∞ of holomorphic functions on the disk which extend to be
C∞ on the closed disk:

A∞ ⊂ D ⊂ H2

Ideas and results from both the containing space and the contained
space are frequently used to study the Dirichlet space. We saw an
example of each in the previous proof.

The Carleson-Jacobs theorem insured that the outer function we
constructed was in A∞ and hence in D.
The constraint (log) for functions in H2 showed that there was no easy
way to replace the exponent .95 in our example by 1.
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Boundary Zero Sets

The situation is complicated and not well understood; and the
methods are rather different than those I have been discussing. I will
just mention a few results for flavor.

D ⊂ H2 hence boundary zero sets must have measure zero.
If E is a closed set of capacity zero then, by work of Brown and Cohn
refining earlier work by Carleson, there is an f ∈ D ∩ A(D) with zero
set exactly E .

Suppose E is a closed subset of the circle with complementary
intervals {In} . The following is due to several people independently:
If ∑ |In | = 2π (so |E | = 0) and ∑ |In | |log |In || < ∞ (so E is a
Carleson set) then ∃f ∈ A∞ ⊂ D with zero set exactly E .
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