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Talk 5

The Disk and Tree
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I will

1 Introduce a structured decomposition of the unit disk.
2 Discuss decomposition theorems for the Bergman and Dirichlet space.
The decomposition of functions will be related to the decomposition
of the disk.

3 Introduce a tree structure associated to the decomposition and
function spaces on the tree that are discrete models of the Bergman
and Dirichlet space.

4 Describe some results for the discrete model Dirichlet space and
indicate how these results are related to the existence of boundary
values.

5 Discuss very briefly an instance of using a result from the model to
obtain a result on the classical space.
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In this talk I hope to present one big idea:

A tree gives a simplified model for the unit
disk. Function spaces on the tree can be
useful models for function spaces on the disk.

I will go quickly, use pictures to speed things up, and probably still won’t
get through the list I just gave.
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The Decomposition of the Disk

We divide the disk into rings, narrower as we go to the boundary. We
divide the nth ring into 2n equal pieces. This is shown in the first
figure. However the picture rapidly becomes chaotic. The second
picture is the standard stylized representation of a part of the disk, for
instance the bottom quadrant of the disk, after subdivision; the pieces
are called squares.
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Art Credit: Zvi Harper
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Let {Bn}∞
n=1 be an enumeration of the squares and, for each n, select

a point zn ∈ Bn. Set ∆n = 1− |zn |2 . Thus Bn is, roughly, a box with
side length ∆n, Euclidean area ∆2n, and hyperbolic area 1. (I am not
going to introduce the basics of the hyperbolic geometry of the disk.
However if you know that geometry you can see that it is a natural
language for this construction.)
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The Decomposition Theorem

Here is an outline of an argument: Suppose we have f in the
Bergman space. We write κz (w) = (1− z̄w)−2 for the Bergman
kernel function, κ̂z for the normalized kernel, and κn for κzn .

f (z) = 〈f , κz 〉A2 =
∫

D
f (ζ)

1(
1− z ζ̄

)2 dξdη

= ∑
∫
Bn
f (ζ)

1(
1− z ζ̄

)2 dξdη

∼ ∑ f (zn)
1(

1− zn ζ̄
)2∆2n

= ∑ f (zn)κn∆2n
∼ ∑ {f (zn)∆n} κ̂n

Making this approximation scheme quantitative and iterating it leads
to a proof of the first statement below, term by term integration then
produces the second.
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Theorem
1 Given f ∈ A2 there are scalars {λn} ∈ `2 with ‖{λn}‖`2 ∼ ‖f ‖A2 so
that

f (z) = ∑ λn κ̂n

This can be done so that λn ∼ f (zn)∆n. Conversely....
2 Given b ∈ D there are scalars {βn} ∈ `2 with ‖{βn}‖`2 ∼ ‖b‖D so
that

b(z) = ∑ βn(∆n κ̂n)

This can be done so that βn ∼ b′(zn) and conversely....

Note: The κ̂n are normalized in A2, the functions ∆n κ̂n are normalized in
D : ‖∆n κ̂n‖D ∼ 1.
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The Tree and "Integration"

We form a tree T (connected loopless graph) using the set of boxes
as nodes and and connecting each node ( = box) with the two nodes
from the boxes directly below.

There is one special node, root, the root of the tree. It corresponds to
origin of the disk.

The three pictures show the first few steps in building the tree, a
stylized presentation of the corresponding points of the disk, and the
standard representation of the tree.

Notice in the last picture that, informally at least, there seems to be a
notion of "path going to the boundary" and perhaps even of an ideal
boundary.
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The Dyadic Dirichlet Space
The Tree in the Disk

Think of T as sitting inside D with the root o at 0.
Think of ∂T as being the same as T.
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We define a linear operator I mapping functions on T to functions
on T . For h defined on T define H = Ih by

H(Bα) = Ih(Bα) = ∑
root→Bα

h(Bβ).

The summation over the nodes on the natural (geodesic) path from
the root to Ba. I is our discrete model for integration along a
segment from 0 to a point ζ in the disk.

The inverse, discrete differentiation is given by

(∆H) (Bα) = H(Bα−)−H(Bα) = h(Bα)
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The Tree Bergman and Dirichlet Spaces

The decomposition theorem establishes a close relationship between
functions f ∈ A2 and sequences {λα} ∈ `2(T ); at a very informal
level we think of λn ∼ f (zn)∆n and of {κ̂n} as a variation on the idea
of an orthonormal basis. With this as background we define the tree
Bergman space A2(T ) by A2(T ) = `2(T ).
The functions in the Dirichlet space are indefinite integrals of
Bergman space functions. With that as a guide we define tree
Dirichlet space D(T ) by

D(T ) =
{
Ih : h ∈ A2(T )

}
and we norm D(T ) so this is an isometry.
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There is an informal coherence between the two definitions: If we
start with F ∈ D (with F (0) = 0) then we have F ′ ∈ A2. Thus
{F ′n} = {F ′(zn)∆n} is in `2(T ) = A

2(T ). Now we form F in D(T )
using our discrete model integration operator; F =IF ’.
We have

F (zn) = ∑F ′(zk )
= ∑ F ′(zn)∆n

∼
∫ zn

0
F ′(z)dz = F (zn)− F (0)

= F (zn).
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Although it is not clear if it will be productive, we can now import
many of the definitions and ideas from D to D(T ) : reproducing
kernel, multiplier, Carleson measure, HSIS, etc. etc. The translation
process is generally mechanical. The picture below is an example of a
matching of structures.
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A Glance at Function Theory on the Tree

The analogy between the function theories on D(T ) and on D turns
out to be deep and broad. Sometimes work on the tree model
suggests what might be true in D and what proofs might work in D.
Also, some results in the dyadic space can be pulled back to D. We
will hear more about this later; for now I will just mention a few facts
that indicate the flavor.

Some particular results:

Carleson measures for D(T ) are characterized by the testing condition.
That is, the ideas and formulas for D(T ) are essentially the same as
for D; the pictures are slightly different. There is real analytical work
required for the proof that the testing condition is suffi cient.
There is also a (tree) capacity characterization of Carleson measures.
A set in the "boundary of the tree" has capacity zero if and only if it is
a null set for all Carleson measures. (This result comes out of the
direct proof that the testing condition and the capacity condition are
equivalent.)
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Consequences for "Boundary Values"

Every F ∈ D(T ) has "boundary values" off a set of capacity zero.
Proof discussion: if F = I(·F ) then F ∗ = I (|∆F |) is a majorant for
the variation of F along any path. Hence it suffi ces to show that
F ∗ < ∞ off an appropriate exceptional set. We have F ∗ ∈ D(T ) and
the "partial sums" of F ∗ are positive and monotonic. With these facts
one can show that

∫
|F ∗|2 dµ < ∞ for any D(T ) Carleson measure µ

on the "boundary" of T .
Hence the set on which |F ∗| = ∞ is a µ−null set. µ was an arbitrary
Carleson measure and hence the exceptional set has capacity zero.
Variations of this argument give a range of results between this "radial
convergence" result and the NRS theorem, larger convergence regions
played off against larger exceptional sets. The variations use more
complicated choices for the majorant and, sometimes, generalizations
of D(T ).
There are then mechanical ways to use the tree results to get the
analogous disk results.
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Gains and Losses

The construction of the majorant F ∗ made central use of the fact
that the map from {an} to {|an |} is an isometry on the tree Bergman
space. That fact, and other similar ones, are great conveniences when
working with the model spaces and there are no easy analogs for the
spaces of holomorphic functions.

Analysis on the tree space can be used to give all the other classical
boundary convergence results for D except the NRS result. It is not
clear if there is a fundamental obstacle to proving the NRS theorem
that way. (One difference between the NRS result and the others is
that the NRS result does not include related results on variation as
one approaches the boundary.)
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Back to the Disk

To prove that the testing condition characterizes Carleson measures
D one writes the disk as a union of boxes, replaces the integrand by a
well selected constant majorant on each box, and observes that the
question has been reduced to knowing if the tree testing condition
characterizes tree Carleson measures.
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