Notation

$\mathbb{D}=\{z \in \mathbb{C}:|z|<1\} \quad f \in \operatorname{Hol}(\mathbb{D}), f(z)=\sum_{n} \hat{f}(n) z^{n}$

- $H^{2}=\left\{f \in \operatorname{Hol}(\mathbb{D}):\|f\|_{H^{2}}^{2}=\sum_{n}|\hat{f}(n)|^{2}<\infty\right\}$

Invariant subspaces of the Dirichlet shift and harmonically weighted Dirichlet spaces.

Stefan Richter

Department of Mathematics The University of Tennessee, Knoxville

June, 2011

Operators

- $D=\left\{f \in \operatorname{Hol}(\mathbb{D}):\|f\|_{D}^{2}=\sum_{n}(n+1)|\hat{f}(n)|^{2}<\infty\right\}$

$$
\|f\|_{D}^{2}=\|f\|_{H^{2}}^{2}+\int_{|z|<1}\left|f^{\prime}(z)\right|^{2} \frac{d A(z)}{\pi}
$$

- $L_{a}^{2}=\left\{f \in \operatorname{Hol}(\mathbb{D}):\|f\|_{L_{a}^{2}}^{2}=\sum_{n} \frac{|\hat{f}(n)|^{2}}{n+1}<\infty\right\}$

$$
\begin{gathered}
\|f\|_{L_{\mathrm{a}}^{2}}^{2}=\int_{|z|<1}|f(z)|^{2} \frac{d A(z)}{\pi} \\
D \subseteq H^{2} \subseteq L_{a}^{2}
\end{gathered}
$$

Invariant subspaces

If $\mathcal{H} \in\left\{H^{2}, D, L_{a}^{2}\right\}$, then
$\left(M_{z}, \mathcal{H}\right)$ is defined by $\left(M_{z} f\right)(z)=z f(z) \forall f \in \mathcal{H}$
$\left(M_{z}, H^{2}\right)=$ unilateral shift
$\mathcal{M} \in \operatorname{Lat}\left(M_{z}, \mathcal{H}\right)$ iff $\mathcal{M} \subseteq \mathcal{H}$ is a closed subspace and if $M_{z} \mathcal{M} \subseteq \mathcal{M}$
$\left(M_{z}, D\right)=$ Dirichlet shift
$\left(M_{z}, L_{a}^{2}\right)=$ Bergman shift

Beurling's Theorem, 1948

$\mathcal{M} \ominus \mathcal{M} \mathcal{M}=\mathcal{M} \cap(z \mathcal{M})^{\perp}$ is called the wandering subspace for \mathcal{M}

- Cyclic invariant subspaces: Let $f \in \mathcal{H}, f \neq 0$
$[f]=\operatorname{span}\left\{f, z f, z^{2} f, z^{3} f, \ldots\right\}=$ the cyclic subspace generated by f.
- Zero-set based invariant subspaces: Let $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}} \subseteq \mathbb{D}$, $\mathcal{M}=I\left(\left\{\lambda_{n}\right\}\right)=\left\{f \in \mathcal{M}: f\left(\lambda_{n}\right)=0\right.$ for all $\left.n\right\}$.

Then

- $\operatorname{dim}[f] \ominus z[f]=1$.
- If $I\left(\left\{\lambda_{n}\right\}\right) \neq(0)$ is zero-set based, then $\operatorname{dim} \mathcal{M} \ominus z \mathcal{M}=1$.

Theorem

Let $(0) \neq \mathcal{M} \in \operatorname{Lat}\left(M_{z}, H^{2}\right)$, then

- $\operatorname{dim} \mathcal{M} \ominus \boldsymbol{z} \mathcal{M}=1$,
- if $\varphi \in \mathcal{M} \ominus \mathbf{z} \mathcal{M},\|\varphi\|=1$, then

$$
\mathcal{M}=[\varphi]=\varphi H^{2}, \quad \text { so } \frac{\mathcal{M}}{\varphi}=H^{2}
$$

- $\varphi \in \mathcal{M} \ominus \mathbf{Z} \mathcal{M},\|\varphi\|=1$ is an inner function, i.e. $|\varphi(z)|=1$ for a.e. $|z|=1$.
$\varphi(z)=c z^{n} \prod_{k \geqslant 1} \frac{\bar{\lambda}_{k}}{\left|\lambda_{k}\right|} \frac{\lambda_{k}-z}{1-\bar{\lambda}_{k} z} e^{-\int_{0}^{2 \pi} \frac{e^{t}+z}{e^{t}-z} d \sigma(t)}(\sigma$ singular, $|c|=1)$.

Bergman space invariant subspaces

Arne Beurling (1905-1986)

Theorem (Apostol, Bercovici, Foias, Pearcy, 1985) If $n \in \mathbb{N} \cup\{\infty\}$, then there is $\mathcal{M} \in \operatorname{Lat}\left(M_{z}, L_{a}^{2}\right)$ such that

$$
\operatorname{dim} \mathcal{M} \ominus \boldsymbol{Z} \mathcal{M}=n
$$

Corollary (Sandwich Theorem, ABFP)
If for all $\mathcal{M}, \mathcal{N} \in \operatorname{Lat}\left(M_{z}, L_{a}^{2}\right), \mathcal{M} \subseteq \mathcal{N}$, $\operatorname{dim} \mathcal{N} \ominus \mathcal{M}>1$, there is $\mathcal{K} \in \operatorname{Lat}\left(M_{z}, L_{a}^{2}\right)$,

```
\mathcal{M}}\ddagger\mathcal{K}\varsubsetneqq\mathcal{N}
```

then every operator on a Hilbert space of dim >1 has a nontrivial invariant subspace.

Theorem (Hedenmalm, 1991)
If $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}} \subseteq \mathbb{D}$, if

$$
\mathcal{M}=\left\{f \in L_{a}^{2}: f\left(\lambda_{n}\right)=0 \text { for all } n\right\} \in \operatorname{Lat}\left(M_{z}, L_{a}^{2}\right)
$$

if $\varphi \in \mathcal{M} \ominus \mathbf{z \mathcal { M }},\|\varphi\|=1$, then

$$
H^{2} \subseteq \frac{\mathcal{M}}{\varphi} \subseteq L_{a}^{2}
$$

Theorem (Aleman, Richter, Sundberg, 1996)
If $\mathcal{M} \in \operatorname{Lat}\left(M_{z}, L_{a}^{2}\right)$, then

$$
\mathcal{M}=[\mathcal{M} \ominus \boldsymbol{z} \mathcal{M}] .
$$

If $\operatorname{dim} \mathcal{M} \ominus z \mathcal{M}=1$, if $\varphi \in \mathcal{M} \ominus \mathcal{M},\|\varphi\|=1$, then

$$
\mathcal{M}=[\varphi] \text { and } H^{2} \subseteq \frac{\mathcal{M}}{\varphi} \subseteq L_{\mathrm{a}}^{2} \text {. }
$$

Dirichlet space invariant subspaces, II

Recall: If $(0) \neq \mathcal{M} \in \operatorname{Lat}\left(M_{z}, H^{2}\right)$, then $\mathcal{M}=\varphi H^{2}, \varphi$ inner. $M_{\varphi}: H^{2} \rightarrow \mathcal{M} \subseteq H^{2}, f \rightarrow \varphi f$ is isometric.
Hence $P=M_{\varphi} M_{\varphi}^{*}$ is a projection with kernel
$=\operatorname{kerM}_{\varphi}^{*}=\left(\operatorname{ran} M_{\varphi}\right)^{\perp}=\mathcal{M}^{\perp}$, i.e. $P_{\mathcal{M}}=M_{\varphi} M_{\varphi}^{*}$.
Theorem (McCullough-Trent, 2000)
Let $(0) \neq \mathcal{M} \in \operatorname{Lat}\left(M_{z}, D\right)$, then
there are $\left\{\varphi_{n}\right\} \subseteq M(D)$ such that

$$
P_{\mathcal{M}}=\sum_{n} M_{\varphi_{n}} M_{\varphi_{n}}^{*}(S O T)
$$

The proof uses that $k_{\lambda}(z)=\frac{1}{\overline{\lambda z}} \log \frac{1}{1-\overline{\lambda z}}$ is a CNP kernel (complete Nevanlinna Pick kernel).
Theorem (Greene, Richter, Sundberg, 2002)

Dirichlet space invariant subspaces, I

Theorem (Richter-Sundberg 1991-92, Aleman 93)
Let $(0) \neq \mathcal{M} \in \operatorname{Lat}\left(M_{z}, D\right)$, then

- $\operatorname{dim} \mathcal{M} \ominus z \mathcal{M}=1$,
- if $\varphi \in \mathcal{M} \ominus z \mathcal{M},\|\varphi\|=1$, then

$$
\mathcal{M}=[\varphi]=\varphi D\left(m_{\varphi}\right), \quad \text { and } D \subseteq \frac{\mathcal{M}}{\varphi}=D\left(m_{\varphi}\right) \subseteq H^{2},
$$

- $\varphi \in \mathcal{M} \ominus Z \mathcal{M},\|\varphi\|=1$ is a contractive multiplier, i.e. $\|\varphi f\| \leqslant\|f\| \forall f \in D$, in particular $|\varphi(z)| \leqslant 1$ for $|z|<1$.

$$
\begin{aligned}
& D(\mu)=\{f \in \operatorname{Hol}(\mathbb{D}):\left.\int_{|z|<1}\left|f^{\prime}(z)\right|^{2} \int_{|\zeta|=1} \frac{1-|z|^{2}}{|z-\zeta|^{2}} d \mu(\zeta) \frac{d A(z)}{\pi}<\infty\right\} \\
& d m_{\varphi}(z)=|\varphi(z)|^{2} \frac{|d z|}{2 \pi}
\end{aligned}
$$

Theorem (Shimorin, 2002)
The reproducing kernel for each harmonically weighted Dirichlet space $D(\mu)$ is a CNP kernel.
Careful: It is not true, that if \mathcal{H} has a CNP kernel and if $\mathcal{M} \in \operatorname{Lat}\left(M_{z}, \mathcal{H}\right)$, then \mathcal{M} has a CNP kernel.
Corollary
Let $\mathcal{M}, \mathcal{N} \in \operatorname{Lat}\left(M_{z}, D(\mu)\right)$, with

$$
(0) \neq \mathcal{M} \subseteq \mathcal{N} \subseteq D(\mu)
$$

and extremal functions $\varphi_{\mathcal{M}}, \varphi_{\mathcal{N}}$, then

$$
D(\mu) \subseteq \frac{\mathcal{N}}{\varphi_{\mathcal{N}}}=D\left(\mu_{\varphi_{\mathcal{N}}}\right) \subseteq D\left(\mu_{\varphi_{\mathcal{M}}}\right)=\frac{\mathcal{M}}{\varphi_{\mathcal{M}}} \subseteq H^{2}
$$

$$
\left.n t\left|-\lim _{\lambda \rightarrow z} \sum_{n}\right| \varphi_{n}(\lambda)\right|^{2}=1 \text { for a.e. } z \in \mathbb{T}
$$

Wold decomposition

Two-isometric operators

Definition
We say an operator $T \in \mathcal{B}(\mathcal{H})$ is analytic, if $\bigcap_{n} T^{n} \mathcal{H}=(0)$.
If $\mathcal{H} \subseteq \operatorname{Hol}(\mathbb{D})$, then $\left(M_{z}, \mathcal{H}\right)$ is analytic.
Corollary
Let $T \in \mathcal{B}(\mathcal{H})$ be isometric and analytic, then $T=S$ is a unilateral shift of multiplicity $\operatorname{dim} \mathcal{H} \ominus T \mathcal{H}$

Corollary
Let $T=\left(M_{z}, H^{2}\right)$, thus T is isometric and analytic, then $\forall \mathcal{M} \in \operatorname{LatT}, \mathcal{M} \neq(0)$ we have
$T \mid \mathcal{M}$ is isometric and analytic,
hence $T \mid \mathcal{M}$ is unitarily equivalent to a unilateral shift of multiplicity $\operatorname{dim} \mathcal{M} \ominus T \mathcal{M}$.
Thus, Beurling's theorem follows essentially by showing that $\operatorname{dim} \mathcal{M} \ominus T \mathcal{M}=1$.

Theorem
Let $T \in \mathcal{B}(\mathcal{H})$ be isometric, i.e. $\|T x\|=\|x\| \forall x \in \mathcal{H}$ (equivalently, $\langle T x, T y\rangle=\langle x, y\rangle \forall x, y \in \mathcal{H}$).
Then

$$
T=S \oplus U \text { with respect to } \mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}
$$

U unitary (=isometric and onto), $\mathcal{H}_{2}=\bigcap_{n} T^{n} \mathcal{H}$
S unilateral shift of multiplicity $\operatorname{dim} \mathcal{H} \ominus T \mathcal{H}$
$T \mathcal{H}=S \mathcal{H}_{1} \oplus U \mathcal{H}_{2}=S \mathcal{H}_{1} \oplus \mathcal{H}_{2}$

$$
\bigcap_{n} T^{n} \mathcal{H}=\bigcap_{n} S^{n} \mathcal{H}_{1} \oplus \mathcal{H}_{2}=(0) \oplus \mathcal{H}_{2}
$$

If $\mathcal{K}=\mathcal{H} \ominus \boldsymbol{T} \mathcal{H}=\mathcal{H}_{1} \ominus \mathcal{S H}_{1}$, then

$$
\mathcal{H}_{1}=\mathcal{K} \oplus S \mathcal{K} \oplus S^{2} \mathcal{K} \oplus \ldots
$$

Thus the name wandering subspace (Halmos).

$\left(M_{z}, D\right)$ is a 2-isometry

$f(z)=\sum_{n=0}^{\infty} \hat{f}(n) z^{n}, \quad z f(z)=\sum_{n=1}^{\infty} \hat{f}(n-1) z^{n}$,
$\|f\|_{D}^{2}=\sum_{n=0}^{\infty}(n+1)|\hat{f}(n)|^{2}$
$\|z f\|_{D}^{2}=\sum_{n=1}^{\infty}(n+1)|\hat{f}(n-1)|^{2}=\sum_{n=0}^{\infty}(n+2)|\hat{f}(n)|^{2}$
$\|z f\|_{D}^{2}-\|f\|_{D}^{2}=\sum_{n=0}^{\infty}|\hat{f}(n)|^{2}=\|f\|_{H^{2}}^{2}$

$$
\left\|z^{2} f\right\|_{D}^{2}-\|z f\|_{D}^{2}=\|z f\|_{H^{2}}^{2}=\|f\|_{H^{2}}^{2}=\|z f\|_{D}^{2}-\|f\|_{D}^{2}
$$

Definition (Agler)
$T \in \mathcal{B}(\mathcal{H})$ is a two-isometry, if and only if

$$
\left\|T^{2} x\right\|^{2}-\|T x\|^{2}=\|T x\|^{2}-\|x\|^{2} \quad \forall x \in \mathcal{H}
$$

Theorem (Wold decomposition for 2-isos)
Let $T \in \mathcal{B}(\mathcal{H})$ be a 2-isometry.
Then

$$
T=S \oplus U \text { with respect to } \mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}
$$

U unitary, $\mathcal{H}_{2}=\bigcap_{n} T^{n} \mathcal{H}$
S analytic 2-isometry
Proof.
Lemma (proof later)
$\|T x\| \geqslant\|x\| \quad \forall x \in \mathcal{H}$
Verify that $T \mathcal{H}_{2}=\mathcal{H}_{2}$, then $T \mid \mathcal{H}_{2}$ is an invertible 2-isometry, and $\left(T \mid \mathcal{H}_{2}\right)^{-1}$ is a 2-isometry.
Then by the Lemma $T \mid \mathcal{H}_{2}=U$ unitary.
Finally show that \mathcal{H}_{2} is reducing using U unitary, T
2-isometry.

Theorem

Let $T \in \mathcal{B}(\mathcal{H})$, then the following are equivalent:

- T is an analytic 2-isometry with dim $\operatorname{ker} T^{*}=1$,
- T is unitarily equivalent to $\left(M_{z}, D(\mu)\right)$ for some $\mu \in M_{+}(\mathbb{T})$.

$$
\|f\|_{D(\mu)}^{2}=\|f\|_{H^{2}}^{2}+\int_{|\zeta|=1} D_{\zeta}(f) d \mu(\zeta)
$$

$$
D_{\zeta}(f)=\int_{|z|=1} \frac{|f(z)-f(\zeta)|^{2}}{|z-\zeta|^{2}} \frac{|d z|}{2 \pi}=\int_{|z|<1}\left|f^{\prime}(z)\right|^{2} \frac{1-|z|^{2}}{|z-\zeta|^{2}} \frac{d A(z)}{\pi}
$$

If $(0) \neq \mathcal{M} \in \operatorname{Lat}\left(M_{z}, D(\mu)\right)$, if $\operatorname{dim} \mathcal{M} \ominus z \mathcal{M}=1$, then

$$
M_{z} \mid \mathcal{M} \text { is u. e. to }\left(M_{z}, D(\sigma)\right)
$$

We will see that $\mathcal{M}=\varphi D\left(\mu_{\varphi}\right)$.

Theorem (Wandering subspace theorem)
If S is an analytic 2-isometry, and if

$$
\mathcal{K}=\mathcal{H} \ominus \boldsymbol{S H}=(\text { ran } S)^{\perp}=\operatorname{ker} S^{*},
$$

then

$$
\mathcal{H}=[\mathcal{K}]_{S}=\bigvee_{n=0}^{\infty} S^{n} \mathcal{K} .
$$

In particular, if $\mathcal{M} \in \operatorname{Lat} T$ with

$$
\operatorname{dim} \mathcal{M} \ominus T \mathcal{M}=1
$$

then for $\varphi \in \mathcal{M} \ominus \mathcal{M},\|\varphi\|=1$ we have

$$
\mathcal{M}=[\varphi] .
$$

Lemma

If T is a 2-isometry, then $\|T x\| \geqslant\|x\|$ for all $x \in \mathcal{H}$
Proof.
$\left\|T^{2} x\right\|^{2}-\|T x\|^{2}=\|T x\|^{2}-\|x\|^{2}$
$\left\|T^{k} x\right\|^{2}-\left\|T^{k-1} x\right\|^{2}=\|T x\|^{2}-\|x\|^{2}$

$$
\begin{aligned}
\left\|T^{n} x\right\|^{2}-\|x\|^{2} & =\sum_{k=1}^{n}\left\|T^{k} x\right\|^{2}-\left\|T^{k-1} x\right\|^{2} \\
& =\sum_{k=1}^{n}\|T x\|^{2}-\|x\|^{2} \\
& =n\left(\|T x\|^{2}-\|x\|^{2}\right)
\end{aligned}
$$

$\|T x\|^{2}-\|x\|^{2} \geqslant-\frac{1}{n}\|x\|^{2} \rightarrow 0$ as $n \rightarrow \infty$

Thus if T is a 2-isometry, then

$$
T^{*} T-I \geqslant 0
$$

so we define

$$
\begin{gathered}
D=\left(T^{*} T-I\right)^{1 / 2} \\
\text { defect operator }
\end{gathered}
$$

We have $\|D x\|^{2}=\left\langle D^{2} x, x\right\rangle=\|T x\|^{2}-\|x\|^{2}$
and
$\|D T x\|=\|D x\|$ and $\left\|D T^{k} x\right\|=\|D x\|$
hence " T is isometric with respect to $\|x\|_{*}=\|D x\|^{\prime \prime}$

If $M_{n}=\int z^{n} d \mu$ for all n, then for any polynomial
$q(z)=\sum_{n} \hat{q}(n) z^{n}$ we have

$$
\begin{aligned}
\int|q|^{2} d \mu= & \sum_{n, m} \hat{q}(n) \overline{\hat{q}(m)} \int z^{n-m} d \mu \\
= & \sum_{n, m} \hat{q}(n) \overline{\hat{q}(m)} M_{n-m} \\
= & \sum_{n \geqslant 0} \sum_{m=0}^{n} \hat{q}(n) \overline{\hat{q}(m)}\left\langle D T^{n-m} x_{0}, D x_{0}\right\rangle \\
& +\sum_{n \geqslant 0} \sum_{m>n} \hat{q}(n) \overline{\hat{q}(m)}\left\langle D x_{0}, D T^{m-n} x_{0}\right\rangle \\
= & \sum_{n \geqslant 0} \sum_{m=0}^{n} \hat{q}(n) \overline{\hat{q}(m)}\left\langle D T^{n} x_{0}, D T^{m} x_{0}\right\rangle \\
& +\sum_{n \geqslant 0} \sum_{m>n} \hat{q}(n) \overline{\hat{q}(m)}\left\langle D T^{n} x_{0}, D T^{m} x_{0}\right\rangle \\
= & \left\|D q(T) x_{0}\right\|^{2}
\end{aligned}
$$

Theorem

If T is a 2 -iso with defect operator D, if $x_{0} \in \mathcal{H}$, then there exists $\mu \in M_{+}(\mathbb{T})$ such that

$$
\left\|D q(T) x_{0}\right\|^{2}=\int|q|^{2} d \mu \quad \forall q \text { poly. }
$$

Proof.
For $n \geqslant 0$ define

$$
M_{n}=\left\langle D T^{n} x_{0}, D x_{0}\right\rangle
$$

and for $n<0$ set

$$
M_{n}=\left\langle D x_{0}, D T^{|n|} x_{0}\right\rangle
$$

Then $M_{-n}=\overline{M_{n}}$ for all n.
Claim: $\left\{M_{n}\right\}$ is a moment sequence, i.e.
$\exists \mu \in M_{+}(\mathbb{T})$ such that $M_{n}=\int z^{n} d \mu$ for all n

Repeating:

If $M_{n}=\int z^{n} d \mu$ for all n, then for any polynomial $q(z)=\sum_{n} \hat{q}(n) z^{n}$ we have

$$
\int|q|^{2} d \mu=\sum_{n, m} \hat{q}(n) \overline{\hat{q}(m)} M_{n-m}=\left\|D q(T) x_{0}\right\|^{2}
$$

The equality of the RHS with the middle term also shows that $\left\{M_{n}\right\}$ is a moment sequence by the following well-known theorem.

Theorem (Moment sequences)
Let $\left\{M_{n}\right\}_{n \in \mathbb{Z}} \subseteq \mathbb{C}$.
The following are equivalent:

- $\exists \mu \in M_{+}(\mathbb{T})$ with $M_{n}=\int z^{n} d \mu$,
- $\left\{M_{n}\right\}_{n \in \mathbb{Z}}$ is positive definite, i.e. $\forall N \in \mathbb{N} \forall a_{1}, \ldots, a_{N} \in \mathbb{C}$ we have $\sum_{n, m} a_{n} \bar{a}_{m} M_{n-m} \geqslant 0$.

Proof.
We assume the second condition and need to show the existence of the measure μ.
Define a linear functional on the trigonometric polynomials by $L\left(z^{n}\right)=M_{n}$. We will show that L extends to be a positive linear functional on $C(\mathbb{T})$, then the result will follow from the Riesz representation theorem.
Fact (Fejer-Riesz theorem): If $p\left(e^{i t}\right) \geqslant 0$ is a trig poly, then there is an analytic poly q with $p=|q|^{2}$.
Thus $L(p)=L\left(|q|^{2}\right) \geqslant 0$ by hypothesis for any nonnegative trig poly p.
Now use that the trig polys are dense in $C(\mathbb{T})$.

