Notation

D={zeC:lzl<1} feHolD Zn
> H? = {f € Hol(D) : ||f||Z, = Zn\f [ < oo}
Invariant s_ubspace; of the _D_irichlet shift and 112, *J iz Nz\gz\
harmonically weighted Dirichlet spaces. Izl=1 "
> D ={f € Hol(D) : [[f|}} = ¥_,(n+ 1)[f(mP < oo}
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Operators Invariant subspaces

If 3 € {H?, D, L2}, then
(M, H) is defined by (M,f)(z) = zf(z) Vf € H

M e Lat(M,, K) iff M C H is a closed subspace and if
(M, H?) = unilateral shift MM C M

(M, D) = Dirichlet shift

(M;, L2) = Bergman shift



M zM = Mn (zM)* is called the wandering subspace for M
» Cyclic invariant subspaces: Let f ¢ 3, f # 0
[fl = span {f, zf, 22, 2°f, ..} =
the cyclic subspace generated by f.
» Zero-set based invariant subspaces: Let {Ap}hen € D,
M = I({An}) = {f € M : f(A,) =0 for all n}.
Then
» dim[fl© z[ﬂ =1.
> If I({Ap}) # (0) is zero-set based, then dim M & zM = 1.

Arne Beurling (1905-1986)

Beurling’s Theorem, 1948

Theorem
Let (0) # M € Lat(M;, H?), then
» dmMozM =1,
> if@ e MO ZM, |o|| =1, then

M =[] = oH2, so%:HZ,

> @ e Mo zM, |l@| = 1 is an inner function,
ie. lo(z)|=1forae. |z] =1.

2" M2 o~ IFFE90 (4 singular, o] = 1
HWH—AKZ (o singular,fe] =1).

Bergman space invariant subspaces

Theorem (Apostol, Bercovici, Foias, Pearcy, 1985)
If n € N U{co}, then there is M € Lat(M;, L2) such that

dimMeo zM =n.

Corollary (Sandwich Theorem, ABFP)
If for all M, N € Lat(M,, L§), M C N, dmNcM > 1, there is
K e Lat(M,,L2),

MEXEN,
then every operator on a Hilbert space of dim > 1 has a
nontrivial invariant subspace.



Theorem (Hedenmalm, 1991)
If{An}nen € D, if

M={felL2: f(\s) =0 foralln} e Lat(M,,L2),
if o € M&2ZM, |lo| =1, then

HzgM
[}

cL2

Theorem (Aleman, Richter, Sundberg, 1996)
IfM € Lat(M,, L2), then

M=[MozM].

IfdimMe zM =1, if g € M zM, ||o|| =1, then

M= [g] andeg%ng.

Dirichlet space invariant subspaces, Il
Recall: If (0) # M € Lat(M,, H?), then M = @H?, ¢ inner.
Mg : H2 — M C H?, f — f is isometric.

Hence P = M, M;, is a projection with kernel

= kerM;, = (ranM L =ML i Py = MpM;,.
Theorem (McCullough-Trent, 2000)

Let (0) # M € Lat(M,, D), then

there are {¢@n} C M(D) such that

Z M, M;, (SOT)
The proof uses that kj(z) = = Iog —= |s a CNP kernel

(complete Nevanlinna Pick kernel)
Theorem (Greene, Richter, Sundberg, 2002)
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Dirichlet space invariant subspaces, |

Theorem (Richter-Sundberg 1991-92, Aleman 93)
Let (0) # M € Lat(M,, D), then

> dmMezM =1,
> ifo e Mo ZM, @ =1, then

M ’

M= lpl = ¢D(my), and D < = D(mq) € H,

> @ € M zM, ||| = 1 is a contractive multiplier, i.e.
|| @f|| < ||| Vf € D, in particular |¢(z)| < 1 for|z| < 1.

1- 121

D =(reHoD): [ @R[ E-ouo)

|2‘dj

dmy(2) = le(2)

Theorem (Shimorin, 2002)

The reproducing kernel for each harmonically weighted
Dirichlet space D(u) is a CNP kernel.

Careful: It is not true, that if H has a CNP kernel and if
M € Lat(M,, }), then M has a CNP kernel.

Corollary

Let M, N € Lat(Mg, D(w)), with

(0)#MCNCD(w)

and extremal functions @y, o, then

N M
D(p) € —— = Djigy) € Dlpgy) = —— C H2.
PN P
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Two-isometric operators

Definition

We say an operator T € B(3) is analytic, if (), T"H = (0).
If 3¢ C Hol(ID), then (M., H) is analytic.

Corollary

Let T € B(H) be isometric and analytic, then T = S is a
unilateral shift of multiplicity dim H < TH

Corollary

Let T = (M,, H?), thus T is isometric and analytic, then
VM € LatT, M # (0) we have

TIM is isometric and analytic,
hence T|M is unitarily equivalent to a unilateral shift of
multiplicity dim M & TM.

Thus, Beurling’s theorem follows essentially by showing that
dimMo TM =1.

Wold decomposition

Theorem
Let T € B(K) be isometric, i.e. | Tx| = ||x|| Vx € H
(equivalently, (Tx, Ty) = (X, y) VX, y € H).
Then
T =S & U with respect to H = Hq & Hp,

U unitary (=isometric and onto), Hp =, T"H
S unilateral shift of multiplicity dim H & TH
TH = SHy & UK = SHy & Ha

T3 = (8" @ He = (0) & Tz
n n

If X =Ho TH =3Hy © SHy, then
Hy =KD SK®S*K ...
Thus the name wandering subspace (Halmos).
(M;, D) is a 2-isometry
f(2) = T o Hmz", 2f(2) = Y37 Hn—1)2",

113 = X5o(n+ DIF(N)R

213 = S5 (n+ DFn—1)2 = 2 o(n+2)[F(n)R

ll2f113 = 1f]3 = Z 2o lF(mP = |12,
122113 — 11215 = 12fI7e = IflZe = 12115 — 1713
Definition (Agler)

T € B(H) is a two-isometry, if and only if

7212 = [ 7| = || Tx|| — [[x||? vx e 3¢



Theorem (Wold decomposition for 2-isos)
Let T € B(H) be a 2-isometry.
Then
T =S U with respect to H = Hq & Hp,
U unitary, Hp =, T"H
S analytic 2-isometry

Proof.

Lemma (proof later)

711> x|l vx € 3¢

Verify that TH, = Hp, then T|H; is an invertible 2-isometry,and
(T|19¢2) " is a 2-isometry.

Then by the Lemma T|H> = U unitary.

Finally show that 3 is reducing using U unitary, T

2-isometry. o

Theorem
Let T € B(H), then the following are equivalent:

> T is an analytic 2-isometry with dim ker T* =1,
» T is unitarily equivalent to (M,, D(u)) for some p € M (T).

13 = IfllFe + J¢j—1 De(Hdin(2)

If(2) = f(Q)P |dz| J el —12P dA(2)
D¢(f) = —_— = f
<) J\z\:l z—cR  2n )z Iz lz—¢R m

I (0) # M € Lat(M;, D(w)), if dim M & M = 1, then
M;|Mis u. e. to (M, D(0)).

We will see that M = @D(i).

Theorem (Wandering subspace theorem)

If S is an analytic 2-isometry, and if

K =H o SH = (ran S)* = ker S*,

then
0
H=Ks =\ S
n=0
In particular, if M € LatT with
dimMeo TM =1

then for ¢ € M© TM, ||@|| = 1 we have

M= [o].

Lemma
If T is a 2-isometry, then || Tx|| > | x|| for all x € 3

Proof.
HTiXHQ - HT)EH2 =[ITxI? — |x|I?
[THxI2 = T x |12 = || Tx || = |Ix|12

n

2 2 Ky12 k=112

IT7x]% = X1 = 3 IT*x]1Z = | T*"x]|
k=1

"
=3 TP —|Ix|?
k=1

= (I TxI? — [Ix][?)

T2~ [Ix]® > —5lIx|® — 0 as n — oo



Thus if T is a 2-isometry, then
T"T—1=0,

so we define
D=(T"T-N"?
defect operator

We have [|Dx||? = (D2x, x) = || Tx|[2 — |x|}2
and
[DTx]| = || x| and | DT*x|| = || Dx]|

hence "T is isometric with respect to ||x||. = || Dx||”

If M, = [ z"dy for all n, then for any polynomial
=) ,4(n)z" we have

n=0 m=0
+ G(m)a(m)(Dxo, DT™ "x;)
n=0m=>n
S
=Y > 4(maim)(DT %, DT"xo)
n=0m=0

+Y Y a(ma(m)(DT o, DT™xo)

Theorem
If T is a 2-iso with defect operator D, if xo € 3, then there exists
w € My (T) such that

1DG(T)x|[2 = J\q\zdu vq poly.

Proof.
For n > 0 define
M = (DT"xo, Dxo)

and for n < 0 set
My = (Dxo, DT xo)

Then M_,, = M, for all n.
Claim: {M,} is a moment sequence, i.e.
Ju € M (T) such that M, = [ z"dp for all n

Repeating:

If My = [ z"dy for all n, then for any polynomial
z) =Y ,4(n)z" we have

[ = 3 anamMy- = 103(Txl?

The equality of the RHS with the middle term also shows that
{Mp} is a moment sequence by the following well-known
theorem.



Theorem (Moment sequences)
Let {Mp}nez € C.
The following are equivalent:
> 3 p € My (T) with M, = [ z"dp,
> {Mn}nez is positive definite, i.e.
¥ NeNVay,..,ay € Cwe have 3,  anamMp—m > 0.

Proof.

We assume the second condition and need to show the
existence of the measure p.

Define a linear functional on the trigonometric polynomials by
L(z") = M,. We will show that L extends to be a positive linear
functional on C(T), then the result will follow from the Riesz
representation theorem.

Fact (Fejer-Riesz theorem): If p(e!) > 0 is a trig poly, then
there is an analytic poly g with p = |g[2.

Thus L(p) = L(|gl?) > 0 by hypothesis for any nonnegative trig
poly p.

Now use that the trig polys are dense in C(T).
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