Invariant subspaces of the Dirichlet shift and harmonically weighted Dirichlet spaces.

Stefan Richter

Department of Mathematics The University of Tennessee, Knoxville

June, 2011

Operators

If $\mathcal{H} \in \{H^2, D, L_a^2\}$, then

$$(M_z, \mathcal{H})$$
 is defined by $(M_z f)(z) = z f(z) \ \forall f \in \mathcal{H}$

 (M_2, H^2) = unilateral shift

 $(M_z, D) = Dirichlet shift$

 $(M_z, L_a^2) = Bergman shift$

Notation

$$\begin{split} \mathbb{D} &= \{z \in \mathbb{C} : |z| < 1\} \quad f \in \mathsf{Hol}(\mathbb{D}), \ f(z) = \sum_n \hat{f}(n) z^n \\ & \quad \blacktriangleright \ H^2 = \{f \in \mathsf{Hol}(\mathbb{D}) : \|f\|_{H^2}^2 = \sum_n |\hat{f}(n)|^2 < \infty\} \end{split}$$

$$\|f\|_{H^2}^2 = \int_{|z|=1} |f(z)|^2 \frac{|dz|}{2\pi}$$

►
$$D = \{ f \in \text{Hol}(\mathbb{D}) : ||f||_D^2 = \sum_n (n+1) |\hat{f}(n)|^2 < \infty \}$$

$$||f||_D^2 = ||f||_{H^2}^2 + \int_{|z| < 1} |f'(z)|^2 \frac{dA(z)}{\pi}$$

►
$$L_a^2 = \{f \in \mathsf{Hol}(\mathbb{D}) : \|f\|_{L_a^2}^2 = \sum_n \frac{|\hat{f}(n)|^2}{n+1} < \infty\}$$

$$\|f\|_{L_a^2}^2 = \int_{|z| < 1} |f(z)|^2 \frac{dA(z)}{\pi}$$

$$D \subset H^2 \subset L_a^2$$

Invariant subspaces

 $\mathfrak{M}\in \operatorname{Lat}(M_{\mathbf{z}},\mathfrak{H})$ iff $\mathfrak{M}\subseteq \mathfrak{H}$ is a closed subspace and if $M_{\mathbf{z}}\mathfrak{M}\subseteq \mathfrak{M}$

 $\mathcal{M} \ominus z\mathcal{M} = \mathcal{M} \cap (z\mathcal{M})^{\perp}$ is called the wandering subspace for \mathcal{M}

- ► Cyclic invariant subspaces: Let $f \in \mathcal{H}$, $f \neq 0$ [f] = span {f, z^f , z^2f , z^3f , ...} = the cyclic subspace generated by f.
- ▶ Zero-set based invariant subspaces: Let $\{\lambda_n\}_{n\in\mathbb{N}}\subseteq\mathbb{D}$, $\mathcal{M}=J\{\{\lambda_n\}\}=\{f\in\mathcal{M}:f(\lambda_n)=0\text{ for all }n\}$.

Then

- ▶ $dim[f] \ominus z[f] = 1$.
- If I({λ_n}) ≠ (0) is zero-set based, then dim M ⊕ zM = 1.

Arne Beurling (1905-1986)

Beurling's Theorem, 1948

Theorem

Let $(0) \neq \mathfrak{M} \in Lat(M_z, H^2)$, then

- ▶ $dim \mathcal{M} \ominus z\mathcal{M} = 1$,
- if $\varphi \in \mathcal{M} \ominus z\mathcal{M}$, $\|\varphi\| = 1$, then

$$\mathcal{M}=[\phi]=\phi H^2, \quad \text{so } \frac{\mathcal{M}}{\phi}=H^2,$$

 $\begin{array}{l} \blacktriangleright \ \phi \in \mathcal{M} \ominus z \mathcal{M}, \, \|\phi\| = 1 \ \text{is an inner function}, \\ i.e. \ |\phi(z)| = 1 \ \text{for a.e.} \ |z| = 1. \end{array}$

$$\phi(z) = cz^n \prod_{k \geq 1} \frac{\overline{\lambda}_k}{|\lambda_k|} \frac{\lambda_k - z}{1 - \overline{\lambda}_k z} \ e^{-\int_0^{2\pi} \frac{\sigma^2 + z}{\sigma^2 - z} d\sigma(t)} \ (\sigma \ \text{singular}, |c| = 1).$$

Bergman space invariant subspaces

Theorem (Apostol, Bercovici, Foias, Pearcy, 1985)

If $n \in \mathbb{N} \cup \{\infty\}$, then there is $\mathfrak{M} \in \ Lat(M_z, L_a^2)$ such that

$$\dim \mathfrak{M} \ominus z\mathfrak{M} = n$$
.

Corollary (Sandwich Theorem, ABFP)

If for all $\mathbb{M}, \mathbb{N} \in Lat(M_z, L_a^2), \mathbb{M} \subseteq \mathbb{N}$, dim $\mathbb{N} \ominus \mathbb{M} > 1$, there is $\mathbb{K} \in Lat(M_z, L_a^2)$,

$$\mathcal{M} \subsetneq \mathcal{K} \subsetneq \mathcal{N}$$
,

then every operator on a Hilbert space of $\dim > 1$ has a nontrivial invariant subspace.

Theorem (Hedenmalm, 1991)

If $\{\lambda_n\}_{n\in\mathbb{N}}\subset\mathbb{D}$, if

$$\mathcal{M} = \{ f \in L_a^2 : f(\lambda_n) = 0 \text{ for all } n \} \in Lat(M_z, L_a^2),$$

if $\varphi \in \mathcal{M} \ominus z\mathcal{M}$, $\|\varphi\| = 1$, then

$$H^2\subseteq\frac{\mathfrak{M}}{\phi}\subseteq L^2_a.$$

Theorem (Aleman, Richter, Sundberg, 1996)

If $\mathfrak{M} \in \ \text{Lat}(M_z,L_a^2)$, then

$$\mathcal{M} = [\mathcal{M} \ominus z\mathcal{M}].$$

If dim $\mathfrak{M} \ominus z\mathfrak{M} = 1$, if $\varphi \in \mathfrak{M} \ominus z\mathfrak{M}$, $\|\varphi\| = 1$, then

$$\mathcal{M} = [\varphi]$$
 and $H^2 \subseteq \frac{\mathcal{M}}{\varphi} \subseteq L_a^2$.

Dirichlet space invariant subspaces, II

Recall: If $(0) \neq \mathcal{M} \in \text{Lat}(M_2, H^2)$, then $\mathcal{M} = \varphi H^2$, φ inner. $M_{\varphi}: H^2 \to \mathcal{M} \subset H^2, f \to \varphi f$ is isometric.

Hence $P = M_{\varphi} M_{\varphi}^*$ is a projection with kernel

 $= \textit{ker} M_\phi^* = (\text{ran} M_\phi)^\perp = \mathfrak{M}^\perp \text{, i.e. } P_{\mathfrak{M}} = M_\phi M_\phi^*.$

Theorem (McCullough-Trent, 2000)

Let $(0) \neq M \in Lat(M_z, D)$, then

there are $\{\varphi_n\} \subseteq M(D)$ such that

$$P_{\mathfrak{M}} = \sum_{n} M_{\phi_{n}} M_{\phi_{n}}^{*} (SOT)$$

The proof uses that $k_{\lambda}(z) = \frac{1}{\lambda z}\log\frac{1}{1-\lambda z}$ is a CNP kernel (complete Nevanlinna Pick kernel).

Theorem (Greene, Richter, Sundberg, 2002)

$$ntl-\lim_{\lambda\to z}\sum_{n}|\phi_{n}(\lambda)|^{2}=1 \text{ for a.e. } z\in\mathbb{T}$$

Dirichlet space invariant subspaces, I

Theorem (Richter-Sundberg 1991-92, Aleman 93)

Let $(0) \neq M \in Lat(M_z, D)$, then

- $\text{dim } \mathfrak{M} \ominus z \mathfrak{M} = 1,$
- if $\varphi \in \mathfrak{M} \ominus z\mathfrak{M}$, $\|\varphi\| = 1$, then

$$\mathfrak{M} = [\varphi] = \varphi D(m_{\varphi}), \quad \text{and } D \subseteq \frac{\mathfrak{M}}{\varphi} = D(m_{\varphi}) \subseteq H^2,$$

 $\begin{array}{l} \bullet \ \ \, \phi \in \mathbb{M} \ominus z\mathbb{M}, \, \|\phi\| = 1 \text{ is a contractive multiplier, i.e.} \\ \|\phi f\| \leqslant \|f\| \ \forall f \in D, \, \text{in particular} \, |\phi(z)| \leqslant 1 \text{ for } |z| < 1. \end{array}$

$$\begin{split} D(\mu) = & \{f \in \mathsf{Hol}(\mathbb{D}): \int_{|z| < 1} |f'(z)|^2 \int_{|\zeta| = 1} \frac{1 - |z|^2}{|z - \zeta|^2} d\mu(\zeta) \frac{dA(z)}{\pi} < \infty \} \\ & dm_{\phi}(z) = |\phi(z)|^2 \frac{|dz|}{2\pi} \end{split}$$

Theorem (Shimorin, 2002)

The reproducing kernel for each harmonically weighted Dirichlet space D(u) is a CNP kernel.

Careful: It is not true, that if \mathcal{H} has a CNP kernel and if $\mathcal{M} \in \text{Lat}(M_{\sigma}, \mathcal{H})$, then \mathcal{M} has a CNP kernel.

Corollary

Let $\mathfrak{M}, \mathfrak{N} \in Lat(M_z, D(\mathfrak{u}))$, with

$$(0) \neq M \subseteq N \subseteq D(\mu)$$

and extremal functions ϕ_M , ϕ_N , then

$$\textit{D}(\mu)\subseteq\frac{\mathcal{N}}{\phi_{\mathcal{N}}}=\textit{D}(\mu_{\phi_{\mathcal{N}}})\subseteq\textit{D}(\mu_{\phi_{\mathcal{M}}})=\frac{\mathcal{M}}{\phi_{\mathcal{M}}}\subseteq\textit{H}^2.$$

Two-isometric operators

Definition

We say an operator $T \in \mathcal{B}(\mathcal{H})$ is analytic, if $\bigcap_n T^n \mathcal{H} = (0)$. If $\mathcal{H} \subseteq \text{Hol}(\mathbb{D})$, then (M_2, \mathcal{H}) is analytic.

Corollary

Let $T\in \mathfrak{B}(\mathfrak{R})$ be isometric and analytic, then T=S is a unilateral shift of multiplicity dim $\mathfrak{R}\ominus T\mathfrak{R}$

Corollary

Let $T = (M_z, H^2)$, thus T is isometric and analytic, then $\forall \mathcal{M} \in LatT$, $\mathcal{M} \neq (0)$ we have

TIM is isometric and analytic.

hence $T|\mathfrak{M}$ is unitarily equivalent to a unilateral shift of multiplicity dim $\mathfrak{M}\ominus T\mathfrak{M}$.

Thus, Beurling's theorem follows essentially by showing that $\dim \mathcal{M} \ominus T\mathcal{M} = 1$.

Wold decomposition

Theorem

Let $T \in \mathfrak{B}(\mathfrak{H})$ be isometric, i.e. $\|Tx\| = \|x\| \ \forall x \in \mathfrak{H}$ (equivalently, $\langle Tx, Ty \rangle = \langle x, y \rangle \ \forall x, y \in \mathfrak{H}$). Then

$$T = S \oplus U$$
 with respect to $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$,

U unitary (=isometric and onto), $\mathcal{H}_2 = \bigcap_n T^n \mathcal{H}$ S unilateral shift of multiplicity dim $\mathcal{H} \ominus T \mathcal{H}$ $T \mathcal{H} = S \mathcal{H}_1 \oplus U \mathcal{H}_2 = S \mathcal{H}_1 \oplus \mathcal{H}_2$

$$\bigcap_n T^n \mathcal{H} = \bigcap_n S^n \mathcal{H}_1 \oplus \mathcal{H}_2 = (0) \oplus \mathcal{H}_2$$

If $\mathcal{K} = \mathcal{H} \ominus T\mathcal{H} = \mathcal{H}_1 \ominus S\mathcal{H}_1$, then

$$\mathcal{H}_1 = \mathcal{K} \oplus S\mathcal{K} \oplus S^2\mathcal{K} \oplus ...$$

Thus the name wandering subspace (Halmos).

(M_z, D) is a 2-isometry

$$f(z) = \textstyle \sum_{n=0}^{\infty} \hat{f}(n) z^n, \ z f(z) = \textstyle \sum_{n=1}^{\infty} \hat{f}(n-1) z^n,$$

$$||f||_{D}^{2} = \sum_{n=0}^{\infty} (n+1)|\hat{f}(n)|^{2}$$

$$||zf||_{0}^{2} = \sum_{n=1}^{\infty} (n+1)|\hat{f}(n-1)|^{2} = \sum_{n=0}^{\infty} (n+2)|\hat{f}(n)|^{2}$$

$$||zf||_D^2 - ||f||_D^2 = \sum_{n=0}^{\infty} |\hat{f}(n)|^2 = ||f||_{H^2}^2$$

$$||z^2 f||_D^2 - ||z f||_D^2 = ||z f||_{H^2}^2 = ||f||_{H^2}^2 = ||z f||_D^2 - ||f||_D^2$$

Definition (Agler)

 $T \in \mathcal{B}(\mathcal{H})$ is a two-isometry, if and only if

$$\|T^2x\|^2 - \|Tx\|^2 = \|Tx\|^2 - \|x\|^2 \ \, \forall x \in \mathcal{H}$$

Theorem (Wold decomposition for 2-isos)

Let $T \in \mathcal{B}(\mathcal{H})$ be a 2-isometry.

Then

$$T = S \oplus U$$
 with respect to $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$,

U unitary, $\mathcal{H}_2 = \bigcap_n T^n \mathcal{H}$

S analytic 2-isometry

Proof.

Lemma (proof later)

$$||Tx|| \geqslant ||x|| \ \forall x \in \mathcal{H}$$

Verify that $T\mathcal{H}_2=\mathcal{H}_2$, then $T|\mathcal{H}_2$ is an invertible 2-isometry,and $(T|\mathcal{H}_2)^{-1}$ is a 2-isometry.

Then by the Lemma $T|\mathcal{H}_2=U$ unitary.

Finally show that \mathfrak{H}_2 is reducing using U unitary, T 2-isometry.

Theorem

Let $T \in \mathfrak{B}(\mathfrak{H})$, then the following are equivalent:

- ► T is an analytic 2-isometry with dim ker T* = 1,
- $\blacktriangleright \ \, \textit{T is unitarily equivalent to} \, \left(\textit{M}_{\textit{Z}},\textit{D}(\mu)\right) \, \textit{for some} \, \mu \in \textit{M}_{+}(\mathbb{T}).$

$$||f||_{D(\mu)}^2 = ||f||_{H^2}^2 + \int_{|\zeta|=1} D_{\zeta}(f) d\mu(\zeta)$$

$$D_{\zeta}(f) = \int_{|z|=1} \frac{|f(z)-f(\zeta)|^2}{|z-\zeta|^2} \frac{|dz|}{2\pi} = \int_{|z|<1} |f'(z)|^2 \frac{1-|z|^2}{|z-\zeta|^2} \frac{dA(z)}{\pi}$$

If $(0) \neq \mathfrak{M} \in Lat(M_z, D(\mu))$, if dim $\mathfrak{M} \ominus z\mathfrak{M} = 1$, then

 $M_z|\mathcal{M}$ is u. e. to $(M_z, D(\sigma))$.

We will see that $\mathfrak{M}=\phi \textit{D}(\mu_{\phi}).$

Theorem (Wandering subspace theorem)

If S is an analytic 2-isometry, and if

$$\mathcal{K} = \mathcal{H} \ominus S\mathcal{H} = (ran S)^{\perp} = ker S^*,$$

then

$$\mathcal{H} = [\mathcal{K}]_{\mathcal{S}} = \bigvee_{n=0}^{\infty} \mathcal{S}^{n} \mathcal{K}.$$

In particular, if $\mathfrak{M} \in \mathsf{Lat} T$ with

$$\dim \mathfrak{M} \ominus T\mathfrak{M} = 1$$

then for $\varphi \in \mathcal{M} \ominus T\mathcal{M}$, $\|\varphi\| = 1$ we have

$$\mathcal{M} = [\phi].$$

Lemma

If T is a 2-isometry, then $\|Tx\|\geqslant \|x\|$ for all $x\in \mathfrak{H}$

$$\begin{aligned} \|T^n x\|^2 - \|x\|^2 &= \sum_{k=1}^n \|T^k x\|^2 - \|T^{k-1} x\|^2 \\ &= \sum_{k=1}^n \|T x\|^2 - \|x\|^2 \\ &= n(\|T x\|^2 - \|x\|^2) \end{aligned}$$

$$||Tx||^2 - ||x||^2 \geqslant -\frac{1}{n}||x||^2 \to 0 \text{ as } n \to \infty$$

Thus if T is a 2-isometry, then

$$T^*T-I\geqslant 0$$
,

so we define

$$D = (T^*T - I)^{1/2}$$

defect operator

We have $||Dx||^2 = \langle D^2x, x \rangle = ||Tx||^2 - ||x||^2$ and

 $||DTx|| = ||Dx|| \text{ and } ||DT^kx|| = ||Dx||$

hence "T is isometric with respect to $||x||_* = ||Dx||$ "

If $M_n = \int z^n d\mu$ for all n, then for any polynomial $q(z) = \sum_n \hat{q}(n)z^n$ we have

$$\begin{split} \int |q|^2 d\mu &= \sum_{n,m} \hat{q}(n) \overline{\hat{q}(m)} \int z^{n-m} d\mu \\ &= \sum_{n,m} \hat{q}(n) \overline{\hat{q}(m)} M_{n-m} \\ &= \sum_{n \geqslant 0} \sum_{m=0}^n \hat{q}(n) \overline{\hat{q}(m)} \langle DT^{n-m} x_0, Dx_0 \rangle \\ &+ \sum_{n \geqslant 0} \sum_{m=0} \hat{q}(n) \overline{\hat{q}(m)} \langle Dx_0, DT^{m-n} x_0 \rangle \\ &= \sum_{n \geqslant 0} \sum_{m=0}^n \hat{q}(n) \overline{\hat{q}(m)} \langle DT^n x_0, DT^m x_0 \rangle \\ &+ \sum_{n \geqslant 0} \sum_{m=n} \hat{q}(n) \overline{\hat{q}(m)} \langle DT^n x_0, DT^m x_0 \rangle \\ &= \|Dq(T)x_0\|^2 \end{split}$$

Theorem

If T is a 2-iso with defect operator D, if $x_0\in \mathfrak{H}$, then there exists $\mu\in M_+(\mathbb{T})$ such that

$$||Dq(T)x_0||^2 = \int |q|^2 d\mu \ \forall q \ poly.$$

Proof

For $n \ge 0$ define

$$M_n = \langle DT^n x_0, Dx_0 \rangle$$

and for n < 0 set

$$M_n = \langle Dx_0, DT^{|n|}x_0 \rangle$$

Then $M_{-n} = \overline{M_n}$ for all n. **Claim:** $\{M_n\}$ is a moment

Claim: $\{M_n\}$ is a moment sequence, i.e. $\exists \mu \in M_+(\mathbb{T})$ such that $M_n = \int z^n d\mu$ for all n

Repeating:

If $M_n = \int z^n d\mu$ for all n, then for any polynomial $q(z) = \sum_n \hat{q}(n)z^n$ we have

$$\int |q|^2 d\mu = \sum_{n,m} \hat{q}(n) \overline{\hat{q}(m)} M_{n-m} = \|Dq(T)x_0\|^2$$

The equality of the RHS with the middle term also shows that $\{M_n\}$ is a moment sequence by the following well-known theorem.

Theorem (Moment sequences)

Let $\{M_n\}_{n\in\mathbb{Z}}\subseteq\mathbb{C}$. The following are equivalent:

The following are equivalent.

$$\blacktriangleright \ \exists \ \mu \in \textit{M}_{+}(\mathbb{T}) \ \textit{with} \ \textit{M}_{\textit{n}} = \int \textit{z}^{\textit{n}} \textit{d} \mu,$$

•
$$\{M_n\}_{n\in\mathbb{Z}}$$
 is positive definite, i.e. $\forall N \in \mathbb{N} \forall a_1, ..., a_N \in \mathbb{C}$ we have $\sum_{n,m} a_n \overline{a}_m M_{n-m} \geqslant 0$.

Proof.

We assume the second condition and need to show the existence of the measure μ .

Define a linear functional on the trigonometric polynomials by

 $L(z^n)=M_n$. We will show that L extends to be a positive linear functional on $C(\mathbb{T})$, then the result will follow from the Riesz representation theorem.

Fact (Fejer-Riesz theorem): If $p(e^{it}) \ge 0$ is a trig poly, then

There is an analytic poly q with $p=|q|^2$. Thus $L(p)=L(|q|^2)\geqslant 0$ by hypothesis for any nonnegative trig poly p.

Now use that the trig polys are dense in $C(\mathbb{T})$.

'n