Exercises for harmonically weighted Dirichlet spaces

1. Provide the missing details of the proof of the Wold decomposition theorem for 2-isometries:

Let $T \in \mathcal{B}(\mathcal{H})$ be a 2-isometry.

Then

 $T = S \oplus U$ with respect to $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$,

where U is unitary, $\mathcal{H}_2 = \bigcap_n T^n \mathcal{H}$ and S is an analytic 2-isometry

- **2.** Show that if T is a 2-isometry, then $\sigma(T) \subseteq \overline{\mathbb{D}}$.
- **3.** Show that the following identity holds for all polynomials f and all $\zeta \in \mathbb{T}$

$$D_{\zeta}(f) = \int_{|z|=1} \frac{|f(z) - f(\zeta)|^2}{|z - \zeta|^2} \frac{|dz|}{2\pi} = \int_{|z|<1} |f'(z)|^2 \frac{1 - |z|^2}{|z - \zeta|^2} \frac{dA(z)}{\pi}$$

4. For $|\lambda| < 1$ and $f \in H^2$ define

$$D_{\lambda}(f) = \int_{|z|=1} \frac{|f(z) - f(\lambda)|^2}{|z - \lambda|^2} \frac{|dz|}{2\pi}.$$

Show that

$$D_{\zeta}(f) = \operatorname{ntl-}\lim_{\lambda \to \zeta} D_{\lambda}(f)$$

holds for all $f \in H^2$ and for all $\zeta \in \mathbb{T}$.

Suggestion: If $D_{\zeta}(f) < \infty$, then $g(z) = \frac{f(z) - f(\zeta)}{z - \zeta} \in H^2$ and $f(z) = f(\zeta) + (z - \zeta)g(z)$. Express $D_{\lambda}(f)$ in terms of g and use that $\frac{|\lambda - \zeta|}{1 - |\lambda|^2}$ is bounded for λ in a nontangential approach region. Handle $D_{\zeta}(f) = \infty$ separately.

5. Let $f \in H^2$, $|\zeta| = 1$.

(a) Show that there exists c > 0 such that

$$|f(\zeta)|^2 \le c(||f||^2_{H^2} + D_{\zeta}(f))$$
 whenever $D_{\zeta}(f) < \infty$.

(b) Let $\mu \in M_+(\mathbb{T})$ and $f \in H^2$. Show that $f \in D(\mu)$ if and only if $zf \in D(\mu)$ and

$$||zf||_{D(\mu)}^2 = ||f||_{D(\mu)}^2 + \int |f(\zeta)|^2 d\mu(\zeta).$$

In particular, $(M_z, D(\mu))$ is bounded and is an analytic 2-isometry.

6. Let φ be an inner function, $f \in H^2$ and $\lambda \in \overline{\mathbb{D}}$. Show that

$$D_{\lambda}(\varphi f) = D_{\lambda}(\varphi)|f(\lambda)|^2 + D_{\lambda}(f).$$

Here we define $0 \cdot \infty = 0$. Suggestion: Start with $|\lambda| < 1$ and use Problem 4.

7. Let $k_{\lambda}(z) = \frac{1}{1-c\overline{\lambda}z(1+\overline{\lambda}z)}$, where $0 < c \le 1/2$. Then clearly k is a CNP kernel for some Hilbert space $\mathcal{H} \subseteq \operatorname{Hol}(\mathbb{D})$. Let $\mathcal{M} = \{f \in \mathcal{H} : f(0) = 0\}$. Then \mathcal{M} is a multiplier invariant subspace. Calculate the reproducing kernel for \mathcal{M} and show that it is not a CNP kernel. Hint: If $\sum_{n\geq 0} a_n \overline{\lambda}^n z^n$ is positive definite then all $a_n \geq 0$.

8. If k is the RK for $D(\mu)$, then $k_{\lambda}(z) \neq 0$ for all $\lambda, z \in \mathbb{D}$. Hint: If $k_{\lambda}(\alpha) = 0$, then $g = \frac{k_{\lambda}}{\varphi_{\alpha}} \in D(\mu)$ with $\|g\| \leq \|k_{\lambda}\|$ (here $\varphi_{\alpha}(z) = \frac{z-\alpha}{1-\overline{\alpha}z}$ and use Problem 5). Then $|g(\lambda)| > \|g\| \|k_{\lambda}\|$ unless $\|k_{\lambda}\| = 0$.