CYCLICITY IN THE DIRICHLET SPACE

THOMAS RANSFORD

Series of five lectures presented at the summer graduate workshop on the Dirichlet space, MSRI, June 2011

LECTURE 1: INTRODUCTION

Let S be a bounded linear operator on a Banach space X. For $x \in X$, write

$$
[x] := \overline{\operatorname{span}\{S^n x : n \ge 0\}}.
$$

This is the smallest closed S-invariant subspace containing x. We say x is cyclic if $[x] = X$. We shall be interested mainly in the special case $X = \mathcal{D}$ and $S : f(z) \mapsto z f(z)$ (shift). Then

 $[f] = \overline{\{pf : p \text{ is a polynomial}\},\}$

and f is cyclic iff $[f] = \mathcal{D}$.

Examples.

• $[1] = \mathcal{D}$, so 1 is cyclic. Useful consequence: f is cyclic iff there exist polynomials (p_n) such that $p_n f \to 1$ in \mathcal{D} .

• $[z] = \{f \in \mathcal{D} : f(0) = 0\}$, so z is not cyclic. More generally, if f cyclic, then $f(z) \neq 0$ for all $z \in \mathbb{D}$.

• $[z-1] = \mathcal{D}$, so $z-1$ is cyclic (even though it vanishes at $z = 1$). [*Proof*: Let $f \in \mathcal{D}_{\bigcirc}$ [$z-1$]. Then $f \perp (z^{n+1}-z^n)$ for all $n \geq 1$, so $(n+1)f(n+1) = nf(n)$ for all $n \geq 1$, so $\widehat{f}(n) = c/n$ for all $n \geq 1$. Since $f \in \mathcal{D}$, we have $\sum_{n} n|\widehat{f}(n)|$ \sum $2 < \infty$, so $_n |c|^2/n < \infty$, so $c = 0$ and $f = \text{constant}$. Finally $f \perp (z - 1)$ implies $f = 0$.

Problem. Which $f \in \mathcal{D}$ are cyclic?

Why do we care?

- Important step towards classifying the closed shift-invariant subspaces of $\mathcal D$. Each such subspace has the form [f] for some $f \in \mathcal{D}$. But what is [f]? When is $[f] = \mathcal{D}$?
- There is a nice answer in the case of H^2 : f cyclic \iff f is outer.
- Even though $\mathcal D$ is not an algebra, in some sense $[f] \leftrightarrow$ closed ideal generated by f, and cyclic \leftrightarrow invertible.

2 THOMAS RANSFORD

Very brief history

• Brown–Shields (1984): Systematic study of cyclicity in \mathcal{D} . Isolated two necessary conditions for cyclicity, and conjectured that they are sufficient.

Partial versions of the Brown–Shields conjecture obtained in:

- Hedenmalm–Shields (1990)
- Richer–Sundberg (1994)
- El-Fallah–Kellay–Ransford (2006, 2009)

Necessary conditions for cyclicity

Recall that, if $f \in \mathcal{D}$, then the radial limit f^* exists everywhere on T outside a set of logarithmic capacity zero. We write c for capacity.

Theorem (Brown–Shields, 1984). If f is cyclic in \mathcal{D} , then f is outer and $c({f^* = 0}) = 0$.

Proof that f is outer. If f is cyclic in D , then f is cyclic in H^2 . By Beurling's theorem, f is cyclic in H^2 iff f is outer.

Proof that $c({f^* = 0}) = 0$. Set $E := {f^* = 0}$. Let $\mathcal{D}_E := {g \in \mathcal{D} : g^* = 0 \text{ q.e. on } E}$. Then \mathcal{D}_E is an invariant subspace containing f (clear) and it is closed in $\mathcal D$ (see below). If f is cyclic, then necessarily $\mathcal{D}_E = \mathcal{D}$, in particular $1 \in \mathcal{D}_E$, which implies that $c(E) = 0$.

[To see \mathcal{D}_E is closed in \mathcal{D} , let (g_n) be a sequence in \mathcal{D}_E converging to g in \mathcal{D} . For each $t > 0$, we have $c(|g_n^*-g^*| > t) \leq A ||g_n - g||^2_{\mathcal{D}}/t^2$. In particular $c(E \cap { |g^*| > t}) \leq A ||g_n - g||^2_{\mathcal{D}}/t^2$. Let $n \to \infty$ and then $t \to 0$ to get $c(E \cap \{|g^*| > 0\}) = 0$. Thus $g \in \mathcal{D}_E$.

Conjecture (Brown–Shields). If $f \in \mathcal{D}$ is outer and $c({f^* = 0}) = 0$, then f is cyclic.

Finally, here are two pertinent examples.

- Brown–Cohn (1985): Given a compact $E \subset \mathbb{T}$ of capacity zero, there exists a cyclic $f \in \mathcal{D} \cap A(\mathbb{D})$ such that $\{f = 0\} = E$. (Thus the capacity zero condition in the theorem cannot be improved.)
- Carleson (1952): Given a compact $E \subset \mathbb{T}$ satisfying

$$
\int_{\mathbb{T}} \log(\text{dist}(\zeta, E)) |d\zeta| > -\infty,
$$

there exists an outer $f \in A^1(\mathbb{D})$ such that $\{f = 0\} = E$. (Thus the capacity condition in the theorem is not redundant.)

LECTURE 2: GETTING STARTED

We begin with two notions of zero set. Let $f \in \mathcal{D}$. We write:

$$
Z(f^*) := \{ \zeta \in \mathbb{T} : \lim_{r \to 1^{-}} f(r\zeta) = 0 \}
$$

$$
\underline{Z}(f) := \{ \zeta \in \mathbb{T} : \liminf_{z \to \zeta} |f(z)| = 0 \}.
$$

Note that $Z(f^*) \subset \underline{Z}(f)$, with equality if $|f|$ is continuous on $\overline{\mathbb{D}}$. Also $\underline{Z}(f)$ is closed in \mathbb{T} . It can happen that $|Z(f^*)|=0$ and $Z(f)=\mathbb{T}$ (but what if f is outer?).

We shall concentrate our efforts on the following 'weak Brown–Shields conjecture':

Problem. If $f \in \mathcal{D}$ is outer and $c(\underline{Z}(f)) = 0$, then is f is cyclic?

THE CASE $Z(f) = \emptyset$

Theorem (Brown–Shields, 1984). If $f \in \mathcal{D}$ is outer and $\underline{Z}(f) = \emptyset$, then f is cyclic.

The proof is a simple consequence the following lemma.

Lemma (Richter–Sundberg, 1991). If $f, g \in \mathcal{D}$ and $|f| \le C|g|$ on \mathbb{D} , then $[f] \subset [g]$.

Proof of Theorem. The hypothesis $Z(f) = \emptyset$ implies that there exist $a, b > 0$ such that $|f| \ge a$ on $b < |z| < 1$. Since f is outer, it has no zeros in \mathbb{D} , so in fact $|f| \ge a' > 0$ on \mathbb{D} . By the lemma, $[f] \supset [1]$, so f is cyclic.

THE CASE $Z(f)$ is a singleton

Theorem (Hedenmalm–Shields (1990), Richter–Sundberg (1994)). If $f \in \mathcal{D}$ is outer and $Z(f) = \{1\}$, then f is cyclic.

We sketch a proof due to El-Fallah–Kellay-Ransford, based on a technique of Korenblum.

Lemma 1 (Carleson, 1960). Let $f \in H^2$ be outer. Then

$$
\mathcal{D}(f) = \frac{1}{4\pi^2} \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{(\log |f^*(\lambda)| - \log |f^*(\zeta)|)(|f^*(\lambda)|^2 - |f^*(\zeta)|^2)}{|\lambda - \zeta|^2} |d\lambda| |d\zeta|.
$$

Lemma 2 (Fusion lemma). Let $f_1, f_2 \in \mathcal{D}$ be outer. Suppose that $|f_j^*(\zeta)| \leq C d(\zeta, E)$, where E is a closed subset of $\mathbb T$ of measure zero. Let $\mathbb T \setminus E = U_1 \cup U_2$, where U_1, U_2 are disjoint open subsets, and let f be the outer function such that $|f^*| = |f_j^*|$ on U_j . Then $f \in \mathcal{D}$ and

$$
\mathcal{D}(f) \le \mathcal{D}(f_1) + \mathcal{D}(f_2) + \frac{C^2 \pi^2}{2} \log \left(\frac{C\pi}{|f_1(0)|} \right) + \frac{C^2 \pi^2}{2} \log \left(\frac{C\pi}{|f_2(0)|} \right).
$$

Proof. Apply Lemma 1 to f. The contributions from $U_1 \times U_1$ and $U_2 \times U_2$ are bounded above by $\mathcal{D}(f_1)$ and $\mathcal{D}(f_2)$ respectively. It remains to bound the integral

$$
\int_{U_1} \int_{U_2} \frac{(\log |f_1^*(\lambda)| - \log |f_2^*(\zeta)|)(|f_1^*(\lambda)|^2 - |f_2^*(\zeta)|^2)}{|\lambda - \zeta|^2} |d\lambda| |d\zeta|.
$$

If $\lambda \in U_1$ and $\zeta \in U_2$, then there is a point of E between them, so $d(\lambda, \zeta) = d(\lambda, E) + d(\zeta, E)$, and consequently

$$
\left|\frac{|f_1^*(\lambda)|^2 - |f_2^*(\zeta)|^2}{d(\lambda, \zeta)^2}\right| \le \frac{C^2 d(\lambda, E)^2 + C^2 d(\zeta, E)^2}{d(\lambda, E)^2 + d(\zeta, E)^2} = C^2.
$$

The required estimate follows easily from this.

Lemma 3. Let M be a closed subspace of D and let f be a holomorphic function on \mathbb{D} . Suppose that there exists a sequence (f_n) in M such that:

• $f_n(z) \to f(z)$ for each $z \in \mathbb{D}$;

•
$$
\sup_n \mathcal{D}(f_n) < \infty
$$
.

Then $f \in M$.

Proof. Since (f_n) is norm-bounded in M, a subsequence converges weakly to $g \in M$. For each $z \in \mathbb{D}$, evaluation at z is continuous on \mathcal{D} , so $g(z) = f(z)$. Thus $f = g \in M$.

Proof of the theorem. WLOG f is bounded (technical argument). Let $\epsilon_n \to 0^+$. Let $E_n :=$ ${e^{i\epsilon_n}, e^{-i\epsilon_n}}$. Let f_n be the outer function such that

$$
|f_n^*(\zeta)| = \begin{cases} |(\zeta - e^{i\epsilon_n})(\zeta - e^{-i\epsilon_n})f^*(\zeta)| & \text{on the arc of } \mathbb{T} \setminus E \text{ containing 1} \\ |(\zeta - e^{i\epsilon_n})(\zeta - e^{-i\epsilon_n})| & \text{on the other arc.} \end{cases}
$$

Observe that:

- $f_n \in \mathcal{D}$ and $\sup_n \mathcal{D}(f_n) < \infty$ (fusion lemma),
- $f_n(z) \to (z-1)^2$ for each $z \in \mathbb{D}$ (dominated convergence theorem)
- $|f_n| \leq C_n |f|$, so $|f_n| \subset |f|$.

By Lemma 3, applied with $M = [f]$, we have $(z - 1)^2 \in [f]$. But $(z - 1)$ is cyclic, so $(z - 1)^2$ is cyclic, so f is cyclic.

Remark. It seems like it takes a lot of effort to deal with the case where $Z(f)$ is a singleton. However, essentially the same technique yields the following much more general result:

Theorem. Let $f \in \mathcal{D}$ be outer. If $g \in \mathcal{D}$ and $|g(z)| \leq C$ dist $(z, \underline{Z}(f))$, then $g \in [f]$.

LECTURE 3: CAPACITY ENTERS THE PICTURE

Let us briefly recall how capacity is defined. The *energy* of a probability measure μ on $\mathbb T$ is

$$
I(\mu) := \iint \log \frac{2}{|\lambda - \zeta|} d\mu(\lambda) d\mu(\zeta) = \log 2 + \sum_{n \ge 1} \frac{|\widehat{\mu}(n)|^2}{n}.
$$

The *logarithmic capacity* of a compact subset E of $\mathbb T$ is

 $c(E) := 1/\inf\{I(\mu) : \mu \text{ is a probability measure on } E\}.$

Our aim is to prove the following theorem. We write $E_t := \{ \zeta \in \mathbb{T} : d(\zeta, E) \leq t \}.$

Theorem (El-Fallah–Kellay–Ransford, 2006). Let $f \in \mathcal{D}$ be outer and let $E := \underline{Z}(f)$. Suppose that

(1)
$$
\int_0^{\infty} c(E_t) \frac{\log \log(1/t)}{t \log(1/t)} dt < \infty.
$$

Then f is cyclic.

Lemma 1. Let E be a closed subset of \mathbb{T} . Suppose that there exists $h \in \mathcal{D}$ such that

$$
\operatorname{Re} h^*(\zeta) \ge \log \log \frac{2}{d(\zeta, E)} \quad \text{and} \quad |\operatorname{Im} h^*(\zeta)| \le 1.
$$

If $f \in \mathcal{D}$ is outer and $Z(f) \subset E$, then f is cyclic.

Proof. Let $\Lambda := {\lambda \in \mathbb{C} : |\arg \lambda| < 1/2}$. For $\lambda \in \Lambda$, define

$$
g_{\lambda}(z) := \exp(-\lambda e^{h(z)}) \qquad (z \in \mathbb{D}).
$$

It is easy to show that:

- $q_{\lambda} \in \mathcal{D}$ for all $\lambda \in \Lambda$,
- $\lambda \mapsto g_{\lambda} : \Lambda \to \mathcal{D}$ is holomorphic,
- $|g_{\lambda}(z)| \leq \text{dist}(z, E)^{\lambda \cos(1)} \quad (\lambda > 0),$
- $||g_{\lambda} 1||_{\mathcal{D}} \to 0$ as $\lambda \to 0$, $\lambda > 0$.

By the theorem at the end of Lecture 2, if $\lambda > 0$ sufficiently large, then $g_{\lambda} \in [f]$. By the identity principle, $g_{\lambda} \in [f]$ for all $\lambda \in \Lambda$. Hence $1 \in [f]$.

For which sets E does such an h exist? Note that, in general, if $h \in \mathcal{D}$ and

$$
|h^*(\zeta)| \ge \phi(d(\zeta, E)) \quad \text{q.e.}
$$

where $\phi : (0, \pi] \to \mathbb{R}^+$ is an decreasing function, then $|h^*| \geq \phi(t)$ on E_t , and so by the strong-type inequality for capacity,

(2)
$$
\int_0^{\infty} c(E_t) \, |d\phi^2(t)| < \infty.
$$

There is a converse.

Lemma 2. Let E be a closed subset of \mathbb{T} , and let $\phi : (0, \pi] \rightarrow \mathbb{R}^+$ be decreasing and continuous. If (2) holds, then there exists $h \in \mathcal{D}$ such that, q.e. on \mathbb{T} ,

$$
\operatorname{Re} h^*(\zeta) \ge \phi(d(\zeta, E)) \quad \text{and} \quad |\operatorname{Im} h^*(\zeta)| \le 1.
$$

We shall need an auxiliary result about Hilbert spaces, whose proof is left as an exercise.

Lemma 3. Let (h_n) be a sequence in a Hilbert space H such that $(h_m - h_n) \perp h_n$ whenever $m \geq n$. Then $\sum_{n} h_n / ||h_n||^2$ converges in H if and only if $\sum_{n} n / ||h_n||^2 < \infty$.

6 THOMAS RANSFORD

Sketch of proof of Lemma 2. Choose $\delta_n > 0$ so that $\phi(\delta_n) = n$ and set $c_n := c(E_{\delta_n})$. The condition (2) is then equivalent to $\sum_{n} n c_n < \infty$. By forgetting the first few n, we may also suppose that $\sum_{n} c_n < 1/2$. Let μ_n be the equilibrium measure on E_{δ_n} . This is the unique probability measure on E_{δ_n} such that $I(\mu_n) = 1/c_n$. Define

$$
h_n(z) := -\int \log(1 - ze^{-i\theta}) d\mu_n(\theta) \qquad (z \in \mathbb{D}).
$$

Note that h_n is holomorphic and

$$
||h_n||_{\mathcal{D}}^2 = \sum_{k \ge 1} k |\widehat{h}_n(k)|^2 = \sum_{k \ge 1} \frac{|\widehat{\mu}_n(k)|^2}{k} = I(\mu_n) - \log 2 = 1/c_n + O(1).
$$

Using Lemma 3, it follows that $h := \sum_n c_n h_n$ converges in \mathcal{D} . Further,

$$
|\mathrm{Im}\,h|\leq \sum_n c_n\pi/2<1
$$

and, if $\zeta \in E_{\delta_N}$,

$$
\operatorname{Re} h^*(\zeta) \ge \sum_{n=1}^N c_n \int \log \frac{1}{|e^{i\theta} - \zeta|} d\mu_n(\theta) = \sum_{n=1}^N c_n I(\mu_n) = N + O(1).
$$

Thus, after a small adjustment, $\text{Re } h^*(\zeta) \ge \phi(d(\zeta, E)).$

Proof of Theorem. Apply the preceding results with $\phi(t) = \log \log(2/t)$. Condition (2) translates into condition (1). \Box

LECTURE 4: MEASURE-THEORETIC CRITERIA

In the previous section we encountered the condition

$$
\int_0 c(E_t) \frac{\log \log(1/t)}{t \log(1/t)} dt < \infty.
$$

This is hard to check in practice, because of the difficulty in estimating $c(E_t)$. It is implied by a stronger condition, expressed in terms of $|E_t|$ (the Lebesgue measure of E_t), namely:

$$
\int_0 \frac{|E_t|}{(t \log(1/t))^2} dt < \infty.
$$

In particular, there exist Cantor-type sets that satisfy this latter condition, thereby providing examples of infinite sets for which the weak Brown–Shields conjecture holds. However, even for Cantor-type sets, this condition is strictly stronger than capacity zero. From this point of view, the following theorem is better.

Theorem (El-Fallah–Kellay–Ransford, 2009). Let $f \in \mathcal{D}$ be outer and let $E = \underline{Z}(f)$. Suppose that $|E_t| = O(t^{\alpha})$ for some $\alpha > 0$, and that

$$
\int_0 \frac{dt}{|E_t|} = \infty.
$$

Then f is cyclic.

Remark. For Cantor-type sets, the condition $|E_t| = O(t^{\alpha})$ is automatic, and the condition $\int_0 dt/|E_t| = \infty$ is equivalent to $c(E) = 0$.

Let E be a closed subset of $\mathbb T$ of measure zero. Let $w : [0, \pi] \to \mathbb R^+$ be a continuous, increasing function such that $\int_{\mathbb{T}} |\log w(d(\zeta, E))| |d\zeta| < \infty$. We write h_w for the outer function satisfying

$$
|h_w(\zeta)| = w(d(\zeta, E)) \quad (\zeta \in \mathbb{T}).
$$

The first lemma is a simplified form of Carleson's formula for these 'distance functions' h_w .

Lemma 1. Suppose that $t \mapsto w(t^{\gamma})$ is concave, for some $\gamma > 0$. Then

$$
\mathcal{D}(h_w) \leq \begin{cases} C_{\gamma} \int_0^{\pi} w'(t)^2 |E_t| \, dt & \text{if } \gamma > 2 \\ C_{\gamma} \int_0^{\pi} w'(t)^2 t^{1-2/\gamma} \log(\pi/t) |E_t| \, dt & \text{if } \gamma < 2. \end{cases}
$$

We shall also need:

Lemma 2 (Richter–Sundberg, 1992). Let $g \in \mathcal{D}$ be an outer function, let $\beta > 0$ and suppose that $g^{\beta} \in \mathcal{D}$. Then $[g^{\beta}] = [g]$.

Sketch of proof of the theorem. Let $g := h_w$, where $w(t) = t$. By Lemma 1 (with $\gamma = 1$),

$$
\mathcal{D}(g) \le C \int_0^{\pi} t^{-1} \log(\pi/t) |E_t| dt \le C' \int_0^{\pi} \log(\pi/t) t^{\alpha-1} dt < \infty,
$$

so $g \in \mathcal{D}$. Also $|g(z)| \leq C \text{dist}(z, E)$. By the Theorem at the end of Lecture 2, we have $g \in [f]$. So it is enough to prove that g is cyclic.

Now fix $\beta \in (\frac{1-\alpha}{2})$ $\frac{-\alpha}{2}$, $\frac{1}{2}$ $\frac{1}{2}$), and consider g^{β} . Note that $g^{\beta} = h_w$, where $w(t) = t^{\beta}$, so by Lemma 1 (this time with $\gamma = 1/\beta$),

$$
\mathcal{D}(g^{\beta}) \le C \int_0^{\pi} (\beta t^{\beta - 1})^2 |E_t| dt \le C' \int_0^{\pi} t^{2\beta - 2 + \alpha} dt < \infty,
$$

so $g^{\beta} \in \mathcal{D}$. By Lemma 2 we have $[g^{\beta}] = [g]$, so it is enough to prove that g^{β} is cyclic. For $\delta \in (0, 1)$, define $w_{\delta} : [0, \pi] \rightarrow [0, 1]$ by

$$
w_{\delta}(t) := \begin{cases} t^{\beta}, & 0 \leq t \leq \delta \\ A_{\delta} - \log \int_{t}^{\pi} ds / |E_{s}|, & \delta \leq t \leq \eta_{\delta} \\ 1, & \eta_{\delta} \leq t \leq \pi. \end{cases}
$$

Here A_{δ} and η_{δ} are constants chosen to make w_{δ} continuous. It is easy to check that $\eta_{\delta} \to 0$ as $\delta \to 0$. By Lemma 1 again,

$$
\mathcal{D}(h_{w_{\delta}}) \leq C_{\gamma} \int_0^{\pi} w_{\delta}'(t)^2 |E_t| dt
$$

\n
$$
\leq C_{\gamma} \int_0^{\delta} (\beta t^{\beta - 1})^2 |E_t| dt + C_{\gamma} \int_{\delta}^{\eta_{\delta}} \frac{dt}{|E_t| (\int_t^{\pi} ds / |E_s|)^2}
$$

\n
$$
\leq C \int_0^{\delta} t^{2\beta - 2 + \alpha} dt + C \Big(\int_{\delta}^{\pi} \frac{ds}{|E_s|} \Big)^{-1}
$$

\n
$$
\to 0 \quad \text{as } \delta \to 0.
$$

Thus $h_{w_\delta} \to 1$ in $\mathcal D$ as $\delta \to 0$. Also, for each $\delta > 0$, the quotient $w_\delta(t)/t^\beta$ is bounded, so $[h_{w_{\delta}}] \subset [g^{\beta}]$. Hence $1 \in [g^{\beta}]$, as required.

Actually, we cheated, because $t \mapsto w_\delta(t^\gamma)$ is not obviously a concave function for any $\gamma > 2$. We need to modify the definition of w_{δ} , replacing $s \mapsto |E_s|$ by a regularized function of s. The details are omitted.

Remark. The regularization mentioned above proceeds via the following lemma, which may be of independent interest.

Lemma. Let $u : \mathbb{R}^+ \to \mathbb{R}^+$ be a function such that $u(x) - x$ is decreasing. Define

 $\widetilde{u}(x) := \inf\{u(y) : y > x\}.$

Then $\widetilde{u} = u$ on a set of lower density at least $\liminf_{x\to\infty} u(x)/x$.

LECTURE 5: APPROACH VIA DUALITY

Recall that

$$
\mathcal{D} = \Big\{ f(z) = \sum_{k \ge 0} a_k z^k : \sum_{k \ge 0} (k+1)|a_k|^2 < \infty \Big\}.
$$

Its dual may be identified with

$$
\mathcal{B}_e := \Big\{ \phi(z) = \sum_{k \ge 0} b_k / z^{k+1} : \sum_{k \ge 0} |b_k|^2 / (k+1) < \infty \Big\},
$$

the duality being given by

$$
\langle f, \phi \rangle := \sum_{k \geq 0} a_k b_k.
$$

Theorem (Hedenmalm–Shields (1990), Richter–Sundberg (1994)). If $f \in \mathcal{D}$ is outer and $\phi \in [f]^{\perp}$, then ϕ extends to be holomorphic on $\mathbb{C} \setminus \underline{Z}(f)$, and $\phi|_{\mathbb{D}}$ belongs to the Smirnov $class \mathcal{N}^+$.

Proof. We sketch the proof in the case when f continuous on \mathbb{D} . Consider the Banach algebra $A := \mathcal{D} \cap A(\mathbb{D})$, and let I be the closed ideal generated by f. Note that $I \subset [f]$, so $\phi(I) = 0$. Thus ϕ induces a continuous linear functional $\widetilde{\phi}$ on the quotient algebra A/I . The character space of A can be identified with $\overline{\mathbb{D}}$, and that of A/I with $Z(f)$. In particular, the spectrum of z in A/I is $Z(f)$. Define $\psi : \mathbb{C} \setminus Z(f) \to \mathbb{C}$ by

$$
\psi(w) := \langle (w-z)^{-1}, \widetilde{\phi} \rangle_{A/I} \qquad (w \in \mathbb{C} \setminus Z(f)).
$$

Then ψ is holomorphic in $\mathbb{C} \setminus Z(f)$. Further, if $|w| > 1$, then

$$
\psi(w) = \langle (z-w)^{-1}, \phi \rangle_A = \left\langle \sum_{k \ge 0} z^k / w^{k+1}, \phi \right\rangle_A = \sum_{k \ge 0} \langle z^k, \phi \rangle_A / w^{k+1} = \phi(w),
$$

so ψ is an analytic continuation of ϕ . Also, for $|w| < 1$, we have

$$
\left\langle \frac{f(w) - f(z)}{w - z}, \phi \right\rangle_A = \left\langle f(w)(w - z)^{-1}, \widetilde{\phi} \right\rangle_{A/I} = f(w)\psi(w).
$$

The left-hand side can be expressed as the Cauchy transform of a finite measure on T. As such, it belongs to $\bigcap_{p<1}H^p$, and in particular to \mathcal{N}^+ . Since $\phi|_{\mathbb{D}}$ is the quotient of the left-hand side by the bounded outer function f, it follows that $\phi|_{\mathbb{D}} \in \mathcal{N}^+$.

A closed subset E of $\mathbb T$ is called a *Bergman–Smirnov exceptional set* if

$$
\begin{aligned}\n\phi \in \text{Hol}(\mathbb{C} \setminus E) \\
\phi|_{\mathbb{D}_e} \in \mathcal{B}_e \\
\phi|_{\mathbb{D}} \in \mathcal{N}^+ \end{aligned} \bigg\} \Rightarrow \phi \equiv 0.
$$

Corollary. If $f \in \mathcal{D}$ is outer and $Z(f)$ is a Bergman–Smirnov exceptional set, then f is cyclic.

Proof. Just combine the theorem above with the Hahn–Banach theorem. \Box

Problem. Which subsets E of T are Bergman–Smirnov exceptional sets?

Obviously the empty set is one. The next step is:

Theorem. A singleton is a Bergman–Smirnov exceptional set.

For this we use the following generalized maximum principle.

Lemma (Solomjak, 1983). Let E be a closed subset of \mathbb{T} and let ϕ be holomorphic on $\mathbb{C} \setminus E$. Suppose that

$$
\log |\phi(z)| \le \rho(\text{dist}(z, \mathbb{T})) \qquad (z \in \mathbb{C} \setminus E),
$$

where $\rho : (0, \infty) \to (0, \infty)$ is a decreasing function with $\sup_{t>0} \rho(t)/\rho(2t) < \infty$. Then there exists a constant C such that

$$
\log |\phi(z)| \le C\rho(\text{dist}(z, E)) \qquad (z \in \mathbb{C} \setminus E).
$$

Proof of the theorem. Let $\phi \in Hol(\mathbb{C} \setminus \{1\})$ with $\phi|_{\mathbb{D}_e} \in \mathcal{B}_e$ and $\phi|_{\mathbb{D}} \in \mathcal{N}^+$. Since $\phi|_{\mathbb{D}_e} \in \mathcal{B}_e$, we have

$$
|\phi(z)| \le \frac{C}{|z| - 1} \qquad (|z| > 1).
$$

Also, since $\phi|_{\mathbb{D}} \in \mathcal{N}^+$, we have

$$
\log |\phi(z)| \le \frac{C}{1 - |z|} \qquad (|z| < 1).
$$

Using the lemma, it follows that

$$
\log |\phi(z)| \le \frac{C'}{|z-1|} \qquad (z \in \mathbb{C} \setminus \{1\}).
$$

Combining this with the first estimate on ϕ , we deduce that

$$
|\phi(z)| \le \frac{C''}{|z - 1|^2} \qquad (1 < |z| < 2).
$$

In particular $(z-1)^2\phi(z)$ is bounded on $\mathbb{T}\setminus\{1\}$. As $(z-1)^2\phi(z)$ is Smirnov on D, it is also bounded inside D. Thus, at worst, 1 is a pole of ϕ . Moreover, as $\phi|_{\mathbb{D}_e} \in \mathcal{B}_e$, it cannot have a pole at 1. So 1 is a removable singularity. Thus ϕ is entire and hence $\phi \equiv 0$.

From this, we can deduce the result for countable sets.

Theorem (Hedenmalm–Shields, 1990). Every countable closed subset E of $\mathbb T$ is a Bergman– Smirnov exceptional set.

Proof. Let $\phi \in Hol(\mathbb{C} \setminus E)$ with $\phi|_{\mathbb{D}_e} \in \mathcal{B}_e$ and $\phi|_{\mathbb{D}} \in \mathcal{N}^+$. Let E_1 be the (closed) subset of E consisting of those points across which ϕ cannot be continued analytically. If $E_1 \neq \emptyset$, then it contains an isolated point ζ . Using the Cauchy integral, we can decompose ϕ as $\phi_1 + \phi_2$, where ϕ_1 is holomorphic in $\mathbb{C} \setminus (E \setminus \{\zeta\})$ and ϕ_2 is holomorphic in $\mathbb{C} \setminus \{\zeta\}$. Outside \mathbb{D} and near ζ , both ϕ and ϕ_1 are square-integrable, whence so is ϕ_2 . It follows that $\phi_2|_{\mathbb{D}_e} \in \mathcal{B}_e$. Likewise, on T and near ζ , both $(\log^+|\phi(re^{i\theta})|)_{r<1}$ and $(\log^+|\phi_1(re^{i\theta})|)_{r<1}$ are uniformly integrable, whence so is $(\log^+|\phi_2(re^{i\theta})|)_{r<1}$. It follows that $\phi_2|_{\mathbb{D}} \in \mathcal{N}^+$. By the preceding theorem, $\phi_2 \equiv 0$. Hence $\phi = \phi_1$, which is holomorphic at ζ , contradicting the fact that $\zeta \in E_1$. We conclude that E_1 is empty, that ϕ is entire and hence that $\phi \equiv 0$.

To prove the weak Brown–Shields conjecture, it would suffice to show that every compact subset E of $\mathbb T$ of capacity zero is a Bergman–Smirnov exceptional set. This is still an open problem. Carleson has shown that the Bergman–Bergman exceptional sets are precisely the sets of capacity zero.

REFERENCES

- [1] L. Brown, W. Cohn, 'Some examples of cyclic vectors in the Dirichlet space', Proc. Amer. Math. Soc. 95 (1985), 42–46.
- [2] L. Brown, A. Shields, 'Cyclic vectors in the Dirichlet space', Trans. Amer. Math. Soc. 285 (1984), 269–304.
- [3] L. Carleson, 'Sets of uniqueness for functions regular in the unit circle', Acta Math. 87 (1952), 325–345.
- [4] L. Carleson, 'A representation formula for the Dirichlet integral', Math. Z. 73 (1960), 190–196.
- [5] O. El-Fallah, K. Kellay, T. Ransford, 'Cyclicity in the Dirichlet space', Ark. Mat. 44 (2006), 61–86.
- [6] O. El-Fallah, K. Kellay, T. Ransford, On the Brown–Shields conjecture for cyclicity in the Dirichlet space, Adv. Math. 222 (2009), 2196–2214.
- [7] H. Hedenmalm, A. Shields, 'Invariant subspaces in Banach spaces of analytic functions', Michigan Math. $J. 37 (1990), 91-104.$
- [8] S. Richter, C. Sundberg, 'A formula for the local Dirichlet integral', Michigan Math. J. 38 (1991), 355–379.
- [9] S. Richter, C. Sundberg, 'Multipliers and invariant subspaces in the Dirichlet space', J. Operator Theory 28 (1992), 167–186.
- [10] S. Richter, C. Sundberg, 'Invariant subspaces of the Dirichlet shift and pseudocontinuations', Trans. Amer. Math. Soc. **341** (1994), 863–879.
- [11] B. Solomjak, 'Calculuses, annihilators and hyperinvariant subspaces', J. Operator Theory 9 (1983), 341–370.

EXERCISES

- 1. Let S be a bounded linear operator on a Banach space X. A vector $x \in X$ is called hypercyclic for S if the set $\{S^n x : n \geq 0\}$ is dense in X (without taking the span). Which $f \in \mathcal{D}$ are hypercyclic for the shift?
- 2. Give an example of a function $f \in \mathcal{D}$ such that $f^2 \notin \mathcal{D}$.
- **3.** Let $f \in A^1(\mathbb{D})$ with $f \not\equiv 0$. Let $E := {\lbrace \zeta \in \mathbb{T} : f(\zeta) = 0 \rbrace}$. Prove that

$$
\int_{\mathbb{T}} \log \mathrm{dist}(\zeta, E) \, |d\zeta| > -\infty.
$$

- 4. Show that there exists $f \in \mathcal{D}$ such that $|Z(f^*)| = 0$ and $Z(f) = \mathbb{T}$. Can f be chosen to be outer?
- 5. Prove the following lemma, used in Lecture 3. Let (h_n) be a sequence in a Hilbert space H such that $(h_m - h_n) \perp h_n$ whenever $m \geq n$. Then $\sum_n h_n / ||h_n||^2$ converges in H if and only if $\sum_{n} n/||h_n||^2 < \infty$.