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LECTURE 1: INTRODUCTION

Let S be a bounded linear operator on a Banach space X. For x € X, write
[z] := span{S™x : n > 0}.

This is the smallest closed S-invariant subspace containing x. We say x is cyclic if [z] = X.
We shall be interested mainly in the special case X = D and S : f(z) — zf(z) (shift). Then

[f] ={pf : pis a polynomial},
and f is cyclic iff [f] = D.

Examples.

e [1] =D, so 1 is cyclic.
Useful consequence: f is cyclic iff there exist polynomials (p,) such that p,f — 1 in D.

o 2] ={f€D: f(0) =0}, so z is not cyclic.
More generally, if f cyclic, then f(z) # 0 for all z € D.

e [z —1] =D, so z — 1 is cyclic (even though it vanishes at z = 1).
[Proof: Let f € D& [z—1]. Then f L (2" —2") foralln > 1,s0 (n+1)f(n+1) = nf(n)

for all n > 1, so f(n) = ¢/n for all n > 1. Since f € D, we have Y n|f(n)]* < oo, so
> lel?/n < oo, s0 ¢ =0 and f = constant. Finally f L (z — 1) implies f = 0.]

Problem. Which f € D are cyclic?

Why do we care?

e Important step towards classifying the closed shift-invariant subspaces of D. Each
such subspace has the form [f] for some f € D. But what is [f]? When is [f] = D?

e There is a nice answer in the case of H?: f cyclic <= f is outer.

e Even though D is not an algebra, in some sense [f]| <> closed ideal generated by f,
and cyclic <+ invertible.
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VERY BRIEF HISTORY

e Brown—Shields (1984): Systematic study of cyclicity in D. Isolated two necessary
conditions for cyclicity, and conjectured that they are sufficient.

Partial versions of the Brown—Shields conjecture obtained in:
e Hedenmalm—Shields (1990)
e Richer-Sundberg (1994)
e El-Fallah-Kellay—Ransford (2006, 2009)

NECESSARY CONDITIONS FOR CYCLICITY

Recall that, if f € D, then the radial limit f* exists everywhere on T outside a set of
logarithmic capacity zero. We write ¢ for capacity.

Theorem (Brown-Shields, 1984). If f is cyclic in D, then f is outer and c¢({f* =0}) = 0.

Proof that f is outer. If f is cyclic in D, then f is cyclic in H?. By Beurling’s theorem, f
is cyclic in H? iff f is outer.

Proof that c({f* =0}) = 0. Set £ := {f* =0}. Let Dg:={g € D :g¢" =0q.e. on E}.
Then Dg is an invariant subspace containing f (clear) and it is closed in D (see below). If
f is cyclic, then necessarily D = D, in particular 1 € Dg, which implies that ¢(E) = 0.

[To see Dg is closed in D, let (g,) be a sequence in Dy converging to ¢ in D. For each t > 0,
we have c(|gy, — g*| > t) < Allgn — gl|5/t*. In particular ¢(EN{[g*| > t}) < Allgn — gllp/t.
Let n — oo and then t — 0 to get ¢(E N {|g*| > 0}) = 0. Thus g € Dg.] O

Conjecture (Brown-Shields). If f € D is outer and c¢({f* = 0}) =0, then f is cyclic.

Finally, here are two pertinent examples.
e Brown—Cohn (1985): Given a compact £ C T of capacity zero, there exists a cyclic
f€DnNA(D) such that {f =0} = F.

(Thus the capacity zero condition in the theorem cannot be improved.)

e Carleson (1952): Given a compact £ C T satisfying

/ log(dist(C, E)) |d¢| > oo,
T

there exists an outer f € A'(D) such that {f =0} = F.
(Thus the capacity condition in the theorem is not redundant.)
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LECTURE 2: GETTING STARTED

We begin with two notions of zero set. Let f € D. We write:
2(7) = {CE T lm f(r() =0}
Z(f) ={¢ € T liminf|f(2)| = 0}.

Note that Z(f*) C Z(f), with equality if | f| is continuous on D. Also Z(f) is closed in T.
It can happen that |Z(f*)| =0 and Z(f) =T (but what if f is outer?).

We shall concentrate our efforts on the following ‘weak Brown-—Shields conjecture’:

Problem. If f € D is outer and ¢(Z(f)) =0, then is f is cyclic?

THE CASE Z(f) =10
Theorem (Brown-Shields, 1984). If f € D is outer and Z(f) =0, then f is cyclic.

The proof is a simple consequence the following lemma.

Lemma (Richter-Sundberg, 1991). If f,g € D and |f| < C|g| on D, then [f] C [g].

Proof of Theorem. The hypothesis Z(f) = () implies that there exist a,b > 0 such that
|f| > aonb<|z| <1. Since f is outer, it has no zeros in D, so in fact |f| > a’ > 0 on D.
By the lemma, [f] D [1], so f is cyclic. d

THE CASE Z(f) IS A SINGLETON

Theorem (Hedenmalm-Shields (1990), Richter-Sundberg (1994)). If f € D is outer and
Z(f) = {1}, then f is cyclic.

We sketch a proof due to El-Fallah—Kellay-Ransford, based on a technique of Korenblum.
Lemma 1 (Carleson 1960). Let f € H? be outer. Then

(o L ()] ~ log [ ()£ = 17*(Q)F)
S P ATl

Lemma 2 (Fusion lemma). Let fi, f € D be outer. Suppose that |f7(¢)| < Cd((, E), where
E is a closed subset of T of measure zero. Let T\ E = Uy U Uy, where Uy, Uy are disjoint
open subsets, and let f be the outer function such that |f*| = |ff| on U;. Then f € D and

2.2

C*m Cm C2n? Crm
D(f) < D(f1) + D(fo) + — log(m(o)\)* 2 10g<\f2<0>\)'




4 THOMAS RANSFORD

Proof. Apply Lemma 1 to f. The contributions from U; x U; and Uy x Uy are bounded
above by D(f1) and D(f») reSpectlvely It remains to bound the integral

2
[ [ Qs g EONSOP VO
U, Jus — (]

If A € Uy and ¢ € Uy, then there is a point of E between them, so d(\, () = d(\, E)+d((, E),
and consequently

‘ /7 (A \2 5P . C2d(\, B)? + C%d((, E)?

A, Q) T AN E)P? +d(C E)?

The required estimate follows easily from this. O

= C%

Lemma 3. Let M be a closed subspace of D and let f be a holomorphic function on D.
Suppose that there exists a sequence (f,) in M such that:

o f.(2) = f(2) for each z € D;
e sup, D(f,) < 0.

Then f € M.

Proof. Since (f,,) is norm-bounded in M, a subsequence converges weakly to g € M. For
each z € D, evaluation at z is continuous on D, so g(z) = f(z). Thus f =g € M. O

Proof of the theorem. WLOG f is bounded (technical argument). Let €, — 07. Let E, :=
{e'n e~} Let f, be the outer function such that

F4(0)] = |(¢ =€) (¢ —e™™)f*(¢)] on the arc of T\ E containing 1
(¢ = e (¢ — en)) on the other arc.
Observe that:

e [, €D and sup,, D(f,) < oo (fusion lemma),
o f.(2) = (2 — 1)% for each 2 € D (dominated convergence theorem)

o [ful < Culfl, so [fu] C[f]-
By Lemma 3, applied with M = [f], we have (z —1)? € [f]. But (2 —1) is cyclic, so (z —1)?
is cyclic, so f is cyclic. O

Remark. Tt seems like it takes a lot of effort to deal with the case where Z(f) is a singleton.
However, essentially the same technique yields the following much more general result:

Theorem. Let f € D be outer. If g € D and |g(z)| < Cdist(z, Z(f)), then g € [f].

LECTURE 3: CAPACITY ENTERS THE PICTURE

Let us briefly recall how capacity is defined. The energy of a probability measure p on T is

//log 7t A)du((’)—lg2+zw )l

n>1
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The logarithmic capacity of a compact subset E of T is

¢(E) :=1/inf{I(u) : p is a probability measure on E}.

Our aim is to prove the following theorem. We write E; := {( € T : d((, E) < t}.

Theorem (El-Fallah-Kellay-Ransford, 2006). Let f € D be outer and let E = Z(f).
Suppose that

log log(1/t)
(1) /OC(Et)W dt < oo

Then f is cyclic.
Lemma 1. Let E be a closed subset of T. Suppose that there exists h € D such that

Reh*(¢) > loglogﬁ and |[Imh*(¢)| < 1.

If f € D is outer and Z(f) C E, then f is cyclic.

Proof. Let A :={\ € C: |arg\| < 1/2}. For A € A, define
ga(2) = exp(—=Xe"®)) (z € D).
It is easy to show that:

egycDforall \ € A,

e A — gy : A — D is holomorphic,

o [g\(2)| < dist(z, E) <M (X > 0),
e [[gp—1|lp—=>0as A —0, A>0.

By the theorem at the end of Lecture 2, if A > 0 sufficiently large, then g, € [f]. By the
identity principle, g\ € [f] for all A € A. Hence 1 € [f]. O

For which sets E does such an h exist? Note that, in general, if h € D and

(O] = ¢(d(C, E))  ae.

where ¢ : (0,7] — R* is an decreasing function, then |h*| > ¢(t) on E;, and so by the
strong-type inequality for capacity,

2) / (B |d6*(1)] < oo.

0
There is a converse.

Lemma 2. Let E be a closed subset of T, and let ¢ : (0,7] — R be decreasing and
continuous. If (2) holds, then there exists h € D such that, q.e. on T,

Reh*(¢) = ¢(d(¢, E)) and  [Imh*(()] < 1.

We shall need an auxiliary result about Hilbert spaces, whose proof is left as an exercise.

Lemma 3. Let (h,) be a sequence in a Hilbert space H such that (hy, — h,) L h, whenever
m >n. Then Y. hy/||h,||* converges in H if and only if Y, n/||hy|* < co.
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Sketch of proof of Lemma 2. Choose 6, > 0 so that ¢(d,) = n and set ¢, := c¢(Es,). The
condition (2) is then equivalent to > nc, < co. By forgetting the first few n, we may also
suppose that > ¢, < 1/2. Let p, be the equilibrium measure on Ejs,. This is the unique
probability measure on Es, such that I(u,) = 1/¢,. Define

hn(z) = —/log(l — 2e” ) dp, (0) (z € D).
Note that h,, is holomorphic and
N T, (k)2
Il = S w0 = 32 P = 1) 1092 = 1760+ 0(0)
k>1 k>1

Using Lemma 3, it follows that h := ) ¢,h, converges in D. Further,
Imh| <Y eum/2<1

and, if ¢ € Ej,,

N N
. 1
Reh*(¢) > ; Cn / log @ dpa(0) =Y el () = N+ O(1).
Thus, after a small adjustment, Re h*(¢) > ¢(d((, E)). O

Proof of Theorem. Apply the preceding results with ¢(t) = loglog(2/t). Condition (2)
translates into condition (1). O

LECTURE 4: MEASURE-THEORETIC CRITERIA

In the previous section we encountered the condition

log log(1/t)
/OC(Et)W dt < oo.

This is hard to check in practice, because of the difficulty in estimating c(F;). It is implied
by a stronger condition, expressed in terms of |E;| (the Lebesgue measure of F;), namely:

1B N
/oa log(1/0)2 1 <

In particular, there exist Cantor-type sets that satisfy this latter condition, thereby providing
examples of infinite sets for which the weak Brown—Shields conjecture holds. However, even
for Cantor-type sets, this condition is strictly stronger than capacity zero. From this point
of view, the following theorem is better.

Theorem (El-Fallah-Kellay-Ransford, 2009). Let f € D be outer and let E = Z(f).
Suppose that |E;| = O(t*) for some a > 0, and that

dt

= = 00.
o ||

Then f is cyclic.
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Remark. For Cantor-type sets, the condition |E;| = O(t*) is automatic, and the condition
Jodt/|Ey| = oo is equivalent to ¢(E) = 0.

Let E be a closed subset of T of measure zero. Let w : [0, 7] — R* be a continuous, increasing
function such that [ [logw(d(¢, E))| |d¢| < oo. We write h,, for the outer function satisfying

| (Q)] = w(d(C, E)) (€ eT).

The first lemma is a simplified form of Carleson’s formula for these ‘distance functions’ h,,.

Lemma 1. Suppose that t — w(tY) is concave, for some v > 0. Then

D(hy,) < C‘onﬂw(t) |Ey| di Z-f7>2
Cy [y w' ()72 log(n /)| Ey| dt if v < 2.

We shall also need:

Lemma 2 (Richter-Sundberg, 1992). Let g € D be an outer function, let 5 > 0 and suppose
that g° € D. Then [¢°] = [g].

Sketch of proof of the theorem. Let g := hy,, where w(t) = t. By Lemma 1 (with v = 1),

D@ﬁgcft*bﬁﬂﬁﬁﬂﬁgCﬂ/l%@ﬁw%%ﬁ<m,
0 0

so g € D. Also |g(z)] < Cdist(z, F). By the Theorem at the end of Lecture 2, we have
g € [f]- So it is enough to prove that g is cyclic.

Now fix § € (1_7‘”, %), and consider ¢g°. Note that ¢° = h,,, where w(t) = t?, so by Lemma 1
(this time with v = 1/73),

IM%gCAW#ﬂMMﬁgOAFWMﬁ<m,

so ¢° € D. By Lemma 2 we have [¢°] = [g], so it is enough to prove that ¢° is cyclic.
For ¢ € (0,1), define ws : [0, 7] — [0, 1] by
18, 0<t<$§

ws(t) == As —log [ ds/|E|, 6 <t<mns
1, s <t <.
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Here As and 75 are constants chosen to make wgs continuous. It is easy to check that ns — 0
as 0 — 0. By Lemma 1 again,

Dihe,) < C, [ uj(e?I
0

C ' f—1y2 d C " dt
< 7 E. | dt + / =
/ Al A AT AP YA

) s
ds \ 1
gC/ t2ﬁ—2+adt+0/
0 (), 1)

—0 asd — 0.

Thus h,, — 1in D as § — 0. Also, for each § > 0, the quotient ws(¢)/t® is bounded, so
[huw,] C [¢°]. Hence 1 € [¢7], as required.

Actually, we cheated, because t — ws(t7) is not obviously a concave function for any v > 2.
We need to modify the definition of ws, replacing s +— |Es| by a regularized function of s.
The details are omitted. U

Remark. The regularization mentioned above proceeds via the following lemma, which may
be of independent interest.

Lemma. Let u: Rt — RT be a function such that u(x) — x is decreasing. Define

u(z) = inf{u(y) : y > z}.

Then u = u on a set of lower density at least liminf, . u(x)/x.

LECTURE 5: APPROACH VIA DUALITY

Recall that

D= {f(z) =3 a3 (ke Da? < oo}.

k>0 k>0
Its dual may be identified with

B, = {(b(z) = Z:bk/zkJrl : Z bel?/(k+1) < oo},

the duality being given by

(fod) =) arby.

k>0

Theorem (Hedenmalm-Shields (1990), Richter-Sundberg (1994)). If f € D is outer and
¢ € [f]*, then ¢ extends to be holomorphic on C\ Z(f), and ¢|p belongs to the Smirnov
class N'T.

Proof. We sketch the proof in the case when f continuous on D. Consider the Banach
algebra A := DN A(D), and let I be the closed ideal generated by f. Note that I C [f], so

¢(I) = 0. Thus ¢ induces a continuous linear functional ¢ on the quotient algebra A/I. The
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character space of A can be identified with D, and that of A/I with Z(f). In particular,
the spectrum of z in A/I is Z(f). Define ¢ : C\ Z(f) — C by

d(w) = ((w—27"¢an  (weC\Z(f)).
Then ) is holomorphic in C\ Z(f). Further, if |w| > 1, then
’QD('LU) = <(Z - w)_1> ¢>A = <Z Zk/wk+1> ¢>A = Z<Zk> ¢>A/wk+1 = ¢(W),
k>0 k>0

so 1 is an analytic continuation of ¢. Also, for |w| < 1, we have

(LTG5 (paw = B = Fw)to)

w—z
The left-hand side can be expressed as the Cauchy transform of a finite measure on T.
As such, it belongs to N, H?, and in particular to N". Since ¢|p is the quotient of the
left-hand side by the bounded outer function f, it follows that ¢|p € N'T. O

A closed subset E of T is called a Bergman—Smirnov exceptional set if

6 € Hol(C \ E)
(MIDJEEBe :>¢EO
§Z5|]D) eNTt

Corollary. If f € D is outer and Z(f) is a Bergman—Smirnov exceptional set, then f is
cyclic.
Proof. Just combine the theorem above with the Hahn-Banach theorem. 0

Problem. Which subsets E of T are Bergman—Smirnov exceptional sets?

Obviously the empty set is one. The next step is:

Theorem. A singleton is a Bergman—Smirnov exceptional set.

For this we use the following generalized maximum principle.

Lemma (Solomjak, 1983). Let E be a closed subset of T and let ¢ be holomorphic on C\ E.
Suppose that

log|p(z)| < p(dist(z,T)) (2 €C\ E),

where p : (0,00) — (0,00) is a decreasing function with sup,., p(t)/p(2t) < co. Then there
exists a constant C' such that

log|p(z)| < Cp(dist(z, E)) (2 € C\ E).

Proof of the theorem. Let ¢ € Hol(C \ {1}) with ¢|p, € B, and ¢|p € N*. Since ¢|p, € B,
we have

6(2)] < (2] > 1).

2| =1
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Also, since ¢|p € N, we have

C
1 < 1).
oglo(2)| = 1= P (2] < 1)
Using the lemma, it follows that
Cl
loglo(a) < g (=€ C\ (1))
Combining this with the first estimate on ¢, we deduce that
C//
[9(2)] < 1P (1 <[z <2).

In particular (z — 1)2¢(z) is bounded on T\ {1}. As (z — 1)%¢(z) is Smirnov on D, it is also
bounded inside . Thus, at worst, 1 is a pole of ¢. Moreover, as ¢|p, € B, it cannot have
a pole at 1. So 1 is a removable singularity. Thus ¢ is entire and hence ¢ = 0. U

From this, we can deduce the result for countable sets.

Theorem (Hedenmalm—Shields, 1990). Every countable closed subset E of T is a Bergman—
Smirnov exceptional set.

Proof. Let ¢ € Hol(C\ E) with ¢|p, € B, and ¢|p € NT. Let E; be the (closed) subset of £
consisting of those points across which ¢ cannot be continued analytically. If E; # 0, then
it contains an isolated point (. Using the Cauchy integral, we can decompose ¢ as ¢1 + ¢o,
where ¢; is holomorphic in C\ (E\ {¢}) and ¢, is holomorphic in C\ {¢}. Outside D and
near ¢, both ¢ and ¢; are square-integrable, whence so is ¢5. It follows that ¢s|p, € B..
Likewise, on T and near ¢, both (log™ |¢(re?)]),<1 and (log™ |¢(re?)|),<1 are uniformly
integrable, whence so is (log™ |¢a(re?)|),<1. It follows that ¢s|p € NT. By the preceding
theorem, ¢o = 0. Hence ¢ = ¢, which is holomorphic at (, contradicting the fact that
¢ € E;. We conclude that F; is empty, that ¢ is entire and hence that ¢ = 0. U

To prove the weak Brown—Shields conjecture, it would suffice to show that every compact
subset E of T of capacity zero is a Bergman—Smirnov exceptional set. This is still an open
problem. Carleson has shown that the Bergman—Bergman exceptional sets are precisely the
sets of capacity zero.
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EXERCISES

1. Let S be a bounded linear operator on a Banach space X. A vector x € X is called
hypercyclic for S if the set {S™x : n > 0} is dense in X (without taking the span). Which
f € D are hypercyclic for the shift?

2. Give an example of a function f € D such that f* ¢ D.

3. Let f € AY(D) with f #£0. Let E:={¢ € T: f(¢) = 0}. Prove that
/log dist(¢, E) |d¢| > —oo.
T

4. Show that there exists f € D such that |Z(f*)| =0 and Z(f) = T. Can f be chosen to
be outer?

5. Prove the following lemma, used in Lecture 3. Let (h,) be a sequence in a Hilbert space
H such that (h,, —hy,) L h, whenever m > n. Then Y h,/|/h,||? converges in H if and
only if > n/||h,|]? < .



