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Lecture 1: Introduction

Let S be a bounded linear operator on a Banach space X . For x ∈ X , write

[x] := span{Snx : n ≥ 0}.

This is the smallest closed S-invariant subspace containing x. We say x is cyclic if [x] = X .
We shall be interested mainly in the special case X = D and S : f(z) 7→ zf(z) (shift). Then

[f ] = {pf : p is a polynomial},

and f is cyclic iff [f ] = D.

Examples.

• [1] = D, so 1 is cyclic.
Useful consequence: f is cyclic iff there exist polynomials (pn) such that pnf → 1 in D.

• [z] = {f ∈ D : f(0) = 0}, so z is not cyclic.
More generally, if f cyclic, then f(z) 6= 0 for all z ∈ D.

• [z − 1] = D, so z − 1 is cyclic (even though it vanishes at z = 1).

[Proof : Let f ∈ D⊖ [z− 1]. Then f ⊥ (zn+1− zn) for all n ≥ 1, so (n+1)f̂(n+1) = nf̂(n)

for all n ≥ 1, so f̂(n) = c/n for all n ≥ 1. Since f ∈ D, we have
∑

n n|f̂(n)|
2 < ∞, so∑

n |c|
2/n <∞, so c = 0 and f = constant. Finally f ⊥ (z − 1) implies f = 0.]

Problem. Which f ∈ D are cyclic?

Why do we care?

• Important step towards classifying the closed shift-invariant subspaces of D. Each
such subspace has the form [f ] for some f ∈ D. But what is [f ]? When is [f ] = D?

• There is a nice answer in the case of H2: f cyclic ⇐⇒ f is outer.
• Even though D is not an algebra, in some sense [f ] ↔ closed ideal generated by f ,
and cyclic ↔ invertible.
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Very brief history

• Brown–Shields (1984): Systematic study of cyclicity in D. Isolated two necessary
conditions for cyclicity, and conjectured that they are sufficient.

Partial versions of the Brown–Shields conjecture obtained in:
• Hedenmalm–Shields (1990)
• Richer–Sundberg (1994)
• El-Fallah–Kellay–Ransford (2006, 2009)

Necessary conditions for cyclicity

Recall that, if f ∈ D, then the radial limit f ∗ exists everywhere on T outside a set of
logarithmic capacity zero. We write c for capacity.

Theorem (Brown–Shields, 1984). If f is cyclic in D, then f is outer and c({f ∗ = 0}) = 0.

Proof that f is outer. If f is cyclic in D, then f is cyclic in H2. By Beurling’s theorem, f
is cyclic in H2 iff f is outer.

Proof that c({f ∗ = 0}) = 0. Set E := {f ∗ = 0}. Let DE := {g ∈ D : g∗ = 0 q.e. on E}.
Then DE is an invariant subspace containing f (clear) and it is closed in D (see below). If
f is cyclic, then necessarily DE = D, in particular 1 ∈ DE , which implies that c(E) = 0.

[To see DE is closed in D, let (gn) be a sequence in DE converging to g in D. For each t > 0,
we have c(|g∗n − g∗| > t) ≤ A‖gn − g‖2D/t

2. In particular c(E ∩ {|g∗| > t}) ≤ A‖gn − g‖2D/t
2.

Let n→ ∞ and then t→ 0 to get c(E ∩ {|g∗| > 0}) = 0. Thus g ∈ DE .] �

Conjecture (Brown–Shields). If f ∈ D is outer and c({f ∗ = 0}) = 0, then f is cyclic.

Finally, here are two pertinent examples.

• Brown–Cohn (1985): Given a compact E ⊂ T of capacity zero, there exists a cyclic
f ∈ D ∩A(D) such that {f = 0} = E.
(Thus the capacity zero condition in the theorem cannot be improved.)

• Carleson (1952): Given a compact E ⊂ T satisfying
∫

T

log(dist(ζ, E)) |dζ | > −∞,

there exists an outer f ∈ A1(D) such that {f = 0} = E.
(Thus the capacity condition in the theorem is not redundant.)
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Lecture 2: Getting started

We begin with two notions of zero set. Let f ∈ D. We write:

Z(f ∗) := {ζ ∈ T : lim
r→1−

f(rζ) = 0}

Z(f) := {ζ ∈ T : lim inf
z→ζ

|f(z)| = 0}.

Note that Z(f ∗) ⊂ Z(f), with equality if |f | is continuous on D. Also Z(f) is closed in T.
It can happen that |Z(f ∗)| = 0 and Z(f) = T (but what if f is outer?).

We shall concentrate our efforts on the following ‘weak Brown–Shields conjecture’:

Problem. If f ∈ D is outer and c(Z(f)) = 0, then is f is cyclic?

The case Z(f) = ∅

Theorem (Brown–Shields, 1984). If f ∈ D is outer and Z(f) = ∅, then f is cyclic.

The proof is a simple consequence the following lemma.

Lemma (Richter–Sundberg, 1991). If f, g ∈ D and |f | ≤ C|g| on D, then [f ] ⊂ [g].

Proof of Theorem. The hypothesis Z(f) = ∅ implies that there exist a, b > 0 such that
|f | ≥ a on b < |z| < 1. Since f is outer, it has no zeros in D, so in fact |f | ≥ a′ > 0 on D.
By the lemma, [f ] ⊃ [1], so f is cyclic. �

The case Z(f) is a singleton

Theorem (Hedenmalm–Shields (1990), Richter–Sundberg (1994)). If f ∈ D is outer and

Z(f) = {1}, then f is cyclic.

We sketch a proof due to El-Fallah–Kellay-Ransford, based on a technique of Korenblum.

Lemma 1 (Carleson, 1960). Let f ∈ H2 be outer. Then

D(f) =
1

4π2

∫

T

∫

T

(log |f ∗(λ)| − log |f ∗(ζ)|)(|f ∗(λ)|2 − |f ∗(ζ)|2)

|λ− ζ |2
|dλ| |dζ |.

Lemma 2 (Fusion lemma). Let f1, f2 ∈ D be outer. Suppose that |f ∗
j (ζ)| ≤ Cd(ζ, E), where

E is a closed subset of T of measure zero. Let T \ E = U1 ∪ U2, where U1, U2 are disjoint

open subsets, and let f be the outer function such that |f ∗| = |f ∗
j | on Uj. Then f ∈ D and

D(f) ≤ D(f1) +D(f2) +
C2π2

2
log

( Cπ

|f1(0)|

)
+
C2π2

2
log

( Cπ

|f2(0)|

)
.
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Proof. Apply Lemma 1 to f . The contributions from U1 × U1 and U2 × U2 are bounded
above by D(f1) and D(f2) respectively. It remains to bound the integral

∫

U1

∫

U2

(log |f ∗
1 (λ)| − log |f ∗

2 (ζ)|)(|f
∗
1 (λ|

2 − |f ∗
2 (ζ)|

2)

|λ− ζ |2
|dλ| |dζ |.

If λ ∈ U1 and ζ ∈ U2, then there is a point of E between them, so d(λ, ζ) = d(λ,E)+d(ζ, E),
and consequently

∣∣∣ |f
∗
1 (λ)|

2 − |f ∗
2 (ζ)|

2

d(λ, ζ)2

∣∣∣ ≤ C2d(λ,E)2 + C2d(ζ, E)2

d(λ,E)2 + d(ζ, E)2
= C2.

The required estimate follows easily from this. �

Lemma 3. Let M be a closed subspace of D and let f be a holomorphic function on D.

Suppose that there exists a sequence (fn) in M such that:

• fn(z) → f(z) for each z ∈ D;

• supn D(fn) <∞.

Then f ∈ M .

Proof. Since (fn) is norm-bounded in M , a subsequence converges weakly to g ∈ M . For
each z ∈ D, evaluation at z is continuous on D, so g(z) = f(z). Thus f = g ∈M . �

Proof of the theorem. WLOG f is bounded (technical argument). Let ǫn → 0+. Let En :=
{eiǫn, e−iǫn}. Let fn be the outer function such that

|f ∗
n(ζ)| =

{
|(ζ − eiǫn)(ζ − e−iǫn)f ∗(ζ)| on the arc of T \ E containing 1

|(ζ − eiǫn)(ζ − e−iǫn)| on the other arc.

Observe that:

• fn ∈ D and supn D(fn) <∞ (fusion lemma),
• fn(z) → (z − 1)2 for each z ∈ D (dominated convergence theorem)
• |fn| ≤ Cn|f |, so [fn] ⊂ [f ].

By Lemma 3, applied with M = [f ], we have (z−1)2 ∈ [f ]. But (z−1) is cyclic, so (z−1)2

is cyclic, so f is cyclic. �

Remark. It seems like it takes a lot of effort to deal with the case where Z(f) is a singleton.
However, essentially the same technique yields the following much more general result:

Theorem. Let f ∈ D be outer. If g ∈ D and |g(z)| ≤ C dist(z, Z(f)), then g ∈ [f ].

Lecture 3: Capacity enters the picture

Let us briefly recall how capacity is defined. The energy of a probability measure µ on T is

I(µ) :=

∫∫
log

2

|λ− ζ |
dµ(λ) dµ(ζ) = log 2 +

∑

n≥1

|µ̂(n)|2

n
.
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The logarithmic capacity of a compact subset E of T is

c(E) := 1/ inf{I(µ) : µ is a probability measure on E}.

Our aim is to prove the following theorem. We write Et := {ζ ∈ T : d(ζ, E) ≤ t}.

Theorem (El-Fallah–Kellay–Ransford, 2006). Let f ∈ D be outer and let E := Z(f).
Suppose that

(1)

∫

0

c(Et)
log log(1/t)

t log(1/t)
dt <∞.

Then f is cyclic.

Lemma 1. Let E be a closed subset of T. Suppose that there exists h ∈ D such that

Reh∗(ζ) ≥ log log
2

d(ζ, E)
and |Imh∗(ζ)| ≤ 1.

If f ∈ D is outer and Z(f) ⊂ E, then f is cyclic.

Proof. Let Λ := {λ ∈ C : | arg λ| < 1/2}. For λ ∈ Λ, define

gλ(z) := exp(−λeh(z)) (z ∈ D).

It is easy to show that:

• gλ ∈ D for all λ ∈ Λ,
• λ 7→ gλ : Λ → D is holomorphic,
• |gλ(z)| ≤ dist(z, E)λ cos(1) (λ > 0),
• ‖gλ − 1‖D → 0 as λ→ 0, λ > 0.

By the theorem at the end of Lecture 2, if λ > 0 sufficiently large, then gλ ∈ [f ]. By the
identity principle, gλ ∈ [f ] for all λ ∈ Λ. Hence 1 ∈ [f ]. �

For which sets E does such an h exist? Note that, in general, if h ∈ D and

|h∗(ζ)| ≥ φ(d(ζ, E)) q.e.

where φ : (0, π] → R
+ is an decreasing function, then |h∗| ≥ φ(t) on Et, and so by the

strong-type inequality for capacity,

(2)

∫

0

c(Et) |dφ
2(t)| <∞.

There is a converse.

Lemma 2. Let E be a closed subset of T, and let φ : (0, π] → R+ be decreasing and

continuous. If (2) holds, then there exists h ∈ D such that, q.e. on T,

Reh∗(ζ) ≥ φ(d(ζ, E)) and |Imh∗(ζ)| ≤ 1.

We shall need an auxiliary result about Hilbert spaces, whose proof is left as an exercise.

Lemma 3. Let (hn) be a sequence in a Hilbert space H such that (hm − hn) ⊥ hn whenever

m ≥ n. Then
∑

n hn/‖hn‖
2 converges in H if and only if

∑
n n/‖hn‖

2 <∞.
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Sketch of proof of Lemma 2. Choose δn > 0 so that φ(δn) = n and set cn := c(Eδn). The
condition (2) is then equivalent to

∑
n ncn <∞. By forgetting the first few n, we may also

suppose that
∑

n cn < 1/2. Let µn be the equilibrium measure on Eδn . This is the unique
probability measure on Eδn such that I(µn) = 1/cn. Define

hn(z) := −

∫
log(1− ze−iθ) dµn(θ) (z ∈ D).

Note that hn is holomorphic and

‖hn‖
2
D =

∑

k≥1

k|ĥn(k)|
2 =

∑

k≥1

|µ̂n(k)|2

k
= I(µn)− log 2 = 1/cn +O(1).

Using Lemma 3, it follows that h :=
∑

n cnhn converges in D. Further,

|Imh| ≤
∑

n

cnπ/2 < 1

and, if ζ ∈ EδN ,

Reh∗(ζ) ≥
N∑

n=1

cn

∫
log

1

|eiθ − ζ |
dµn(θ) =

N∑

n=1

cnI(µn) = N +O(1).

Thus, after a small adjustment, Reh∗(ζ) ≥ φ(d(ζ, E)). �

Proof of Theorem. Apply the preceding results with φ(t) = log log(2/t). Condition (2)
translates into condition (1). �

Lecture 4: Measure-theoretic criteria

In the previous section we encountered the condition
∫

0

c(Et)
log log(1/t)

t log(1/t)
dt <∞.

This is hard to check in practice, because of the difficulty in estimating c(Et). It is implied
by a stronger condition, expressed in terms of |Et| (the Lebesgue measure of Et), namely:

∫

0

|Et|

(t log(1/t))2
dt <∞.

In particular, there exist Cantor-type sets that satisfy this latter condition, thereby providing
examples of infinite sets for which the weak Brown–Shields conjecture holds. However, even
for Cantor-type sets, this condition is strictly stronger than capacity zero. From this point
of view, the following theorem is better.

Theorem (El-Fallah–Kellay–Ransford, 2009). Let f ∈ D be outer and let E = Z(f).
Suppose that |Et| = O(tα) for some α > 0, and that

∫

0

dt

|Et|
= ∞.

Then f is cyclic.
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Remark. For Cantor-type sets, the condition |Et| = O(tα) is automatic, and the condition∫
0
dt/|Et| = ∞ is equivalent to c(E) = 0.

Let E be a closed subset of T of measure zero. Let w : [0, π] → R+ be a continuous, increasing
function such that

∫
T
| logw(d(ζ, E))| |dζ | <∞. We write hw for the outer function satisfying

|hw(ζ)| = w(d(ζ, E)) (ζ ∈ T).

The first lemma is a simplified form of Carleson’s formula for these ‘distance functions’ hw.

Lemma 1. Suppose that t 7→ w(tγ) is concave, for some γ > 0. Then

D(hw) ≤

{
Cγ

∫ π

0
w′(t)2|Et| dt if γ > 2

Cγ

∫ π

0
w′(t)2t1−2/γ log(π/t)|Et| dt if γ < 2.

We shall also need:

Lemma 2 (Richter–Sundberg, 1992). Let g ∈ D be an outer function, let β > 0 and suppose

that gβ ∈ D. Then [gβ] = [g].

Sketch of proof of the theorem. Let g := hw, where w(t) = t. By Lemma 1 (with γ = 1),

D(g) ≤ C

∫ π

0

t−1 log(π/t)|Et| dt ≤ C ′

∫ π

0

log(π/t)tα−1 dt <∞,

so g ∈ D. Also |g(z)| ≤ C dist(z, E). By the Theorem at the end of Lecture 2, we have
g ∈ [f ]. So it is enough to prove that g is cyclic.

Now fix β ∈ (1−α
2
, 1
2
), and consider gβ. Note that gβ = hw, where w(t) = tβ , so by Lemma 1

(this time with γ = 1/β),

D(gβ) ≤ C

∫ π

0

(βtβ−1)2|Et| dt ≤ C ′

∫ π

0

t2β−2+α dt <∞,

so gβ ∈ D. By Lemma 2 we have [gβ] = [g], so it is enough to prove that gβ is cyclic.

For δ ∈ (0, 1), define wδ : [0, π] → [0, 1] by

wδ(t) :=





tβ , 0 ≤ t ≤ δ

Aδ − log
∫ π

t
ds/|Es|, δ ≤ t ≤ ηδ

1, ηδ ≤ t ≤ π.
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Here Aδ and ηδ are constants chosen to make wδ continuous. It is easy to check that ηδ → 0
as δ → 0. By Lemma 1 again,

D(hwδ
) ≤ Cγ

∫ π

0

w′
δ(t)

2|Et| dt

≤ Cγ

∫ δ

0

(βtβ−1)2|Et| dt+ Cγ

∫ ηδ

δ

dt

|Et|(
∫ π

t
ds/|Es|)2

≤ C

∫ δ

0

t2β−2+α dt+ C
(∫ π

δ

ds

|Es|

)−1

→ 0 as δ → 0.

Thus hwδ
→ 1 in D as δ → 0. Also, for each δ > 0, the quotient wδ(t)/t

β is bounded, so
[hwδ

] ⊂ [gβ]. Hence 1 ∈ [gβ], as required.

Actually, we cheated, because t 7→ wδ(t
γ) is not obviously a concave function for any γ > 2.

We need to modify the definition of wδ, replacing s 7→ |Es| by a regularized function of s.
The details are omitted. �

Remark. The regularization mentioned above proceeds via the following lemma, which may
be of independent interest.

Lemma. Let u : R+ → R+ be a function such that u(x)− x is decreasing. Define

ũ(x) := inf{u(y) : y ≥ x}.

Then ũ = u on a set of lower density at least lim infx→∞ u(x)/x.

Lecture 5: Approach via duality

Recall that

D =
{
f(z) =

∑

k≥0

akz
k :

∑

k≥0

(k + 1)|ak|
2 <∞

}
.

Its dual may be identified with

Be :=
{
φ(z) =

∑

k≥0

bk/z
k+1 :

∑

k≥0

|bk|
2/(k + 1) <∞

}
,

the duality being given by

〈f, φ〉 :=
∑

k≥0

akbk.

Theorem (Hedenmalm–Shields (1990), Richter–Sundberg (1994)). If f ∈ D is outer and

φ ∈ [f ]⊥, then φ extends to be holomorphic on C \ Z(f), and φ|D belongs to the Smirnov

class N+.

Proof. We sketch the proof in the case when f continuous on D. Consider the Banach
algebra A := D ∩A(D), and let I be the closed ideal generated by f . Note that I ⊂ [f ], so

φ(I) = 0. Thus φ induces a continuous linear functional φ̃ on the quotient algebra A/I. The
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character space of A can be identified with D, and that of A/I with Z(f). In particular,
the spectrum of z in A/I is Z(f). Define ψ : C \ Z(f) → C by

ψ(w) := 〈(w − z)−1, φ̃〉A/I (w ∈ C \ Z(f)).

Then ψ is holomorphic in C \ Z(f). Further, if |w| > 1, then

ψ(w) = 〈(z − w)−1, φ〉A =
〈∑

k≥0

zk/wk+1, φ
〉
A
=

∑

k≥0

〈zk, φ〉A/w
k+1 = φ(w),

so ψ is an analytic continuation of φ. Also, for |w| < 1, we have
〈f(w)− f(z)

w − z
, φ

〉
A
= 〈f(w)(w − z)−1, φ̃〉A/I = f(w)ψ(w).

The left-hand side can be expressed as the Cauchy transform of a finite measure on T.
As such, it belongs to ∩p<1H

p, and in particular to N+. Since φ|D is the quotient of the
left-hand side by the bounded outer function f , it follows that φ|D ∈ N+. �

A closed subset E of T is called a Bergman–Smirnov exceptional set if

φ ∈ Hol(C \ E)
φ|De

∈ Be

φ|D ∈ N+



 ⇒ φ ≡ 0.

Corollary. If f ∈ D is outer and Z(f) is a Bergman–Smirnov exceptional set, then f is

cyclic.

Proof. Just combine the theorem above with the Hahn–Banach theorem. �

Problem. Which subsets E of T are Bergman–Smirnov exceptional sets?

Obviously the empty set is one. The next step is:

Theorem. A singleton is a Bergman–Smirnov exceptional set.

For this we use the following generalized maximum principle.

Lemma (Solomjak, 1983). Let E be a closed subset of T and let φ be holomorphic on C\E.
Suppose that

log |φ(z)| ≤ ρ(dist(z,T)) (z ∈ C \ E),

where ρ : (0,∞) → (0,∞) is a decreasing function with supt>0 ρ(t)/ρ(2t) < ∞. Then there

exists a constant C such that

log |φ(z)| ≤ Cρ(dist(z, E)) (z ∈ C \ E).

Proof of the theorem. Let φ ∈ Hol(C \ {1}) with φ|De
∈ Be and φ|D ∈ N+. Since φ|De

∈ Be,
we have

|φ(z)| ≤
C

|z| − 1
(|z| > 1).
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Also, since φ|D ∈ N+, we have

log |φ(z)| ≤
C

1− |z|
(|z| < 1).

Using the lemma, it follows that

log |φ(z)| ≤
C ′

|z − 1|
(z ∈ C \ {1}).

Combining this with the first estimate on φ, we deduce that

|φ(z)| ≤
C ′′

|z − 1|2
(1 < |z| < 2).

In particular (z− 1)2φ(z) is bounded on T \ {1}. As (z− 1)2φ(z) is Smirnov on D, it is also
bounded inside D. Thus, at worst, 1 is a pole of φ. Moreover, as φ|De

∈ Be, it cannot have
a pole at 1. So 1 is a removable singularity. Thus φ is entire and hence φ ≡ 0. �

From this, we can deduce the result for countable sets.

Theorem (Hedenmalm–Shields, 1990). Every countable closed subset E of T is a Bergman–

Smirnov exceptional set.

Proof. Let φ ∈ Hol(C\E) with φ|De
∈ Be and φ|D ∈ N+. Let E1 be the (closed) subset of E

consisting of those points across which φ cannot be continued analytically. If E1 6= ∅, then
it contains an isolated point ζ . Using the Cauchy integral, we can decompose φ as φ1 + φ2,
where φ1 is holomorphic in C \ (E \ {ζ}) and φ2 is holomorphic in C \ {ζ}. Outside D and
near ζ , both φ and φ1 are square-integrable, whence so is φ2. It follows that φ2|De

∈ Be.
Likewise, on T and near ζ , both (log+ |φ(reiθ)|)r<1 and (log+ |φ1(re

iθ)|)r<1 are uniformly
integrable, whence so is (log+ |φ2(re

iθ)|)r<1. It follows that φ2|D ∈ N+. By the preceding
theorem, φ2 ≡ 0. Hence φ = φ1, which is holomorphic at ζ , contradicting the fact that
ζ ∈ E1. We conclude that E1 is empty, that φ is entire and hence that φ ≡ 0. �

To prove the weak Brown–Shields conjecture, it would suffice to show that every compact
subset E of T of capacity zero is a Bergman–Smirnov exceptional set. This is still an open
problem. Carleson has shown that the Bergman–Bergman exceptional sets are precisely the
sets of capacity zero.
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Exercises

1. Let S be a bounded linear operator on a Banach space X . A vector x ∈ X is called
hypercyclic for S if the set {Snx : n ≥ 0} is dense in X (without taking the span). Which
f ∈ D are hypercyclic for the shift?

2. Give an example of a function f ∈ D such that f 2 /∈ D.

3. Let f ∈ A1(D) with f 6≡ 0. Let E := {ζ ∈ T : f(ζ) = 0}. Prove that∫

T

log dist(ζ, E) |dζ | > −∞.

4. Show that there exists f ∈ D such that |Z(f ∗)| = 0 and Z(f) = T. Can f be chosen to
be outer?

5. Prove the following lemma, used in Lecture 3. Let (hn) be a sequence in a Hilbert space
H such that (hm−hn) ⊥ hn whenever m ≥ n. Then

∑
n hn/‖hn‖

2 converges in H if and
only if

∑
n n/‖hn‖

2 <∞.


