Summer School Lecture 8

Daniel Tatare

Wave packets

Seun linéer despeisive pde's - Strichart estimates - When are Strichart et. Larp? Quasilinear poles - Worst non luieur interaction? Q: What are the most concentrated solutions for luxer despersive ple's? Model problem: $i \partial_1 u + A(x, \delta) u = 0$, $u(0) = u_0$

 $8x = 7.8v$ δx_{o} = δx $= 7.$ ζ v $= T \cdot [a''(z_2)] \cdot \delta \hat{z}_2$ $(Sx_0)^2 = T \cdot [\alpha''(\xi_0)]$ $Sx_{s} = \sqrt{T} \cdot (a''(\xi_{s}))^{1/2}$ \mathcal{T} t = σ $e^{i\phi}$ Wave packet = A amplitude phase, solves important in erkonal egn. morelinear problems (linear for the ruglest vove Saussien beams coherent states

Now return to nonlinear pole's - lung time solutions - global solutions, scattering $as t \rightarrow \infty$, slu looks like a lenear wave - high power monlei -> law power $\frac{1}{7}$ scattering Model noblem $(i \partial_t - \Delta)u = \pm u \cdot |u|^2$ 1-d Qi Is there scattering $u \cdot (|u|) \longrightarrow \frac{1}{t}$ dispersive i to decay. linear coeff object distinct response $ct \infty$ -> nor scattering can happen -> borderleure case (+ almost integrable) \rightarrow MLS approxemation peoblement

Linear scattering:

\n
$$
u(t,x) \approx \frac{1}{16} \cdot e^{i\phi(t,x)} \quad a(t,v)
$$
\n
$$
\phi(t,x) \approx t \cdot \phi(v) \quad v = \frac{x}{t}
$$
\nWhat if we plug into the number of t and t are

\n
$$
\phi(t,x) \approx t \cdot \phi(v) \quad v = \frac{x}{t}
$$
\n
$$
\phi(t,x) \approx \frac{x^2}{4t} = t \cdot \left(\frac{v^2}{4}\right)^{-1}
$$
\n
$$
\phi(t,x) \approx \frac{x^2}{4t} = t \cdot \left(\frac{v^2}{4}\right)^{-1}
$$
\n
$$
\Rightarrow \phi\left(\frac{1}{16}\right) \quad \text{cancel to the interval } \text{sym.}
$$
\n
$$
\Rightarrow \text{Hence } \phi(t,x) \text{ and } \phi(t,x) \text{ is the number of } \text{sym.}
$$
\n
$$
\Rightarrow \frac{1}{t^{3}t} \quad \text{form of } \phi(t,x) \text{ is the number of } \text{sym.}
$$
\n
$$
\Rightarrow \frac{1}{t^{3}t} \quad \text{form of } \phi(t,x) \text{ is the number of } \text{sym.}
$$
\n
$$
\phi(t,x) \approx \frac{x^2}{4t} = t \cdot \left(\frac{v^2}{4}\right)^{-1}
$$
\n
$$
\Rightarrow \text{where } \phi(t,x) \text{ is the number of } \text{sym.}
$$
\n
$$
\Rightarrow \frac{1}{t^{3}t} \quad \text{for } \phi(t,x) \text{ is the number of } \text{sym.}
$$
\n
$$
\phi(t,x) \text{ is the number of } \text{sym.}
$$
\n
$$
\Rightarrow \phi(t,x) \text{ is the number of } \text{sym.}
$$
\n
$$
\Rightarrow \phi(t,x) \text{ is the number of } \text{sym.}
$$
\n
$$
\Rightarrow \phi(t,x) \text{ is the number of } \text{sym.}
$$
\n
$$
\Rightarrow \phi(t,x) \text{ is the number of } \text{sym.}
$$
\n
$$
\Rightarrow \phi(t,x) \text{ is the number of } \text{sym.}
$$
\n
$$
\Rightarrow \phi(t,x) \text{ is the number of } \text{sym.}
$$
\n
$$
\Rightarrow \phi(t,x) \text{ is the number of } \text{sym.}
$$
\n

Asymptotic equation for ^a $a_{\epsilon} = \frac{c}{\epsilon} \alpha |a|^2$ ode for a. Can éliminate t if we Change variables. To $|a|$ stay mestaux $S = \mathfrak{c}$ $a_{\mathcal{S}} = \iota \alpha \cdot (a)^{2}$ $a(s) = a(o) \cdot e^{is|a|^2}$ Modified ausate at 00: $\alpha \rightarrow \gamma$ $U(\epsilon, \mathsf{x})$ e $\frac{1}{\sqrt{t}}$ e^{concer} Modified scattering Thereus: Assure $\|u_0\|_{L^2} + \|x u_0\|_{L^2} \leq \varepsilon \ll 1.$ Then the solution is global and has modified scattering asymptotics. "Proof" (outline) Look for solutions like this

Time dependent wave pecket scale: $f_X = \sqrt{T} \cdot \sqrt{a''(f)}$ $\approx \sqrt{T}$

Wave pecket approximate solution to the linear Schrodinger erration.

 $\gamma_v = e^{i\phi(x,t)} \cdot \chi(\frac{x-vt}{\sqrt{t}})$ not a good almost exact solution to the schiadinger equation

 i_{2t} - $\Delta_2 \approx \left(\frac{1}{t}\right)$ 2
 $\frac{1}{t}$ 2

Depintin of 8: $\mathcal{C}(t,v)$ = $\langle \mathcal{C}_v, u \rangle$ Wave packet testing)