Summer School Lecture 9 Daniel Tataru

Recall model problem: $i u_t - \Delta u = \pm \alpha |u|^2$ $l - d$ Therea Assure pxt⁺⁵ would be optimal $\|u_0\|_{L^2} + \|x u_0\|_{L^2}$ $\epsilon \leq \leq 1$ Then the solution is global and has modified scattering asymptotic's $U(\epsilon, \mathsf{x})$ s $\frac{1}{\sqrt{t}}$ e^{ct}, a(v) \cdot e^{ctat} dic \overline{a} Look for solutions leke this: First i ι (ϵ , κ $\frac{1}{\sqrt{t}}$ e^{cp}. $\frac{1}{t}(t, v) + ev$ Q: Given u, how to define 8 so that it satisfies the asymptotic system $P_t 8 = \frac{c}{t} \cdot 8 \cdot 8$

Wave packet testing $g(x,t) = e^{i\phi(x,t)} \cdot \chi(\frac{x-vt}{\sqrt{t}})$ Definition of 8: $\mathcal{C}(t,v)$ = $\langle \mathcal{C}_v, u \rangle$ \overline{t} $\sqrt{\frac{1}{t}}$ $\frac{1}{x}$ \overline{O}

Obs. Suppose u,, uz sh's to leven Schoduger equation, There: $\frac{d}{dt}$ < u,, uz> = 0.

Pleg inte Luneop Soluodenegien eguatich
\n
$$
i u_t + i u_t = t |ui|^2 u
$$

\n $i q_t + i u_t = \frac{1}{t} |u|^2$

Theu

\n
$$
(\hat{S}^2) = \frac{d}{dt} S^2 = \frac{d^2}{dt^2} =
$$

small linen errors but large non luca errors. - Luidblad P. Soffer

small noncumen errors large linear errors

Look at u (t, vt)

key advantage of wave packet testing balances perfectly linear and nonlueen enors

Setup for the most: bootstrap argument.

We hope for $\{u(\epsilon, x) | \epsilon \frac{\epsilon}{\sqrt{1 + \epsilon}}\}$ Set our bootstrap assumption to $u(t,x)$ \subset $\frac{1}{\sqrt{t}}$

Use energy est (vector fields) for initial step:

Energy estimates

\n(a) If
$$
u(t) = ||u(0)||_2 \leq \epsilon
$$
.

\n(b) Use for fields:

\n
$$
L = x + 2ct \, dx
$$
\n
$$
= q \text{ linearly in } 0 \text{ and } 0
$$

\n $\begin{array}{rcl}\n \text{H } u(t) \parallel_{C^{0}} & \leq & \frac{\epsilon}{\sqrt{t}} & t^{C^{2} \epsilon^{2}} \\ \text{Rewank : & Kuvwledge & \epsilon f & 2 & b \text{mod } f\text{?} \\ \text{L} u & \text{allows us to approximate } \epsilon \\ \text{using } \mathscr{S} : \\ \text{L}(t) & \text{all. } \mathscr{S} \end{array}$ \n	\n $\begin{array}{rcl}\n \text{U}(t,x) & = & \frac{1}{\sqrt{t}} & e^{i\phi} & f(t,y) + \text{er}t \\ & \text{all. } \mathscr{S} \end{array}$ \n
\n $\begin{array}{rcl}\n \text{U} & \text{U}(t,x) & \text{U} \\ \text{U} & \text{U}(t,x) & \text{U}(t,x) & \text{U}(t,x) \\ \text{U} & \text{U}(t,x) & \text{U}(t,x) & \text{U}(t,x) & \text{U}(t,x) \\ \text{U} & \text{U}(t,x) & \text{U}(t,x) & \text{U}(t,x) & \text{U}(t,x) \\ \text{U} & \text{U}(t,x) & \text{U}(t,x) & \text{U}(t,x) & \text{U}(t,x) \\ \text{U}(t,x) & \text{U}(t,x) & \text{U}(t,x) &$	

$$
(*) = \text{down as to found the number}
$$
\n
$$
enva = \text{down that any number of terms in the number 1}
$$
\n
$$
How about the sum = \frac{\int (i \partial_t - \Delta)g_v \cdot u \, dx}{\int (i \partial_t - \Delta)g_v \cdot u \, dx}
$$
\n
$$
= \frac{1}{t} \cdot e^{-\frac{i\phi}{t}} \cdot \frac{\int (i \partial_t - \Delta)g_v \cdot u \, dx}{\int (i \partial_t - \Delta)g_v \cdot u \, dx}
$$
\n
$$
= \frac{1}{t} \cdot e^{-\frac{i\phi}{t}} \cdot \frac{\int (x - vt)}{\sqrt{t}} \cdot \frac{1}{\sqrt{t}} \cdot \frac{1
$$

 $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

Pleuch live: $i \dot{y} = \frac{1}{t} r |y|^2 + ev.$ $\frac{f}{\perp}$ \bigcup Ode bound starting at $t = \perp$. $\begin{matrix} 1 \\ \gamma^* \end{matrix} \in \begin{matrix} 1 \\ 2 \end{matrix}$

Modified scattering there: $(x)(\nleftrightarrow)$ $u \sim \frac{1}{\sqrt{t}} e^{i\phi}$ a(v) $e^{i\theta}$ d'adv)²

u Cattering a (V)
data Scattering asymptoted pofile

Asymptotic omplitences

 $\alpha(\nu)$ - \rightarrow u - u_{\circ}

 $^{\prime\prime}$ Cancley problem with data at ∞ Proof Stent with a Construct u^{app} (x) ψ close but not zuite Match with an exact she $\begin{picture}(180,10) \put(0,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}}$ - solve for u_τ with data $U_{\tau}(T) = U^{app}(T)$ - Cook for the limit $u_{\infty} = \frac{1}{1-2\infty}$ u_{∞} $1 - 20$