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Material
B Intro random graphs:
Random Graphs and Complex Networks Volume 1
http://www.win.tue.nl/∼rhofstad/NotesRGCN.html

Volume 2: in preparation on same site

Random Graphs 
and Complex 
Networks
Volume One

Remco van der Hofstad

Cambridge Series in Statistical 
and Probabilistic Mathematics
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“...a modern and deep, yet accessible, introduction to the models that make up that 
basis for the theoretical study of random graphs and complex networks. The book strikes a 
balance between providing broad perspective and analytic rigor that is a pleasure for
the reader.”   –  Adam Wierman, California Institute of Technology
 
“...focuses on a number of core models that have driven recent progress in the fi eld, 
including the Erdös-Rényi random graph, the confi guration model, and preferential 
attachment models. A detailed description is given of all their key properties. This is 
supplemented with insightful remarks about properties of related models so that a full 
panorama unfolds. As the presentation develops, the link to complex networks provides 
constant motivation for the routes that are being chosen.”
    – Frank den Hollander, Leiden University
 
“...the defi nitive introduction to the mathematical world of random networks. Written 
for students with only a modest background in probability theory, it provides plenty of 
motivation for the topic and introduces the essential tools of probability at a gentle pace. 
It covers the modern theory of Erdös-Rényi graphs, as well as the most important models 
of scale-free networks that have emerged in the last 15 years. This is a truly wonderful fi rst 
volume; the second volume, leading up to current research topics, is eagerly awaited.”
    – Peter Mörters, University of Bath
 
“...a wonderful addition to the fi eld. It takes the uninitiated reader from the basics of 
graduate probability to the classical Erdös-Rényi random graph before terminating at some 
of the fundamental new models in the discipline. The author does an exemplary job of 
both motivating the models of interest and building all the necessary mathematical tools 
required to give a rigorous treatment of these models. Each chapter is complemented by 
a comprehensive set of exercises allowing the reader ample scope to actively master the 
techniques covered in the chapter.”
    – Shankar Bhamidi, University of North Carolina
 
“...invaluable for anybody who wants to learn or teach the modern theory of random 
graphs and complex networks. I have used it as a textbook for long and short courses at 
different levels. Students always like the book because it has all they need: exciting 
high-level ideas, motivating examples, very clear proofs, and an excellent set of exercises. 
Easy to read, extremely well structured, and self-contained, the book builds profi ciency 
with random graph models essential for state-of-the-art research.”
    – Nelly Litvak, University of Twente
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Treat selected parts of Chapters I.1, I.6–I.8 and II.2–II.8,
as well as related material.

Argument are probabilistic, using
B first and second moment method;
B branching process approximations.

Will also use KONECT to show statistics of network statisticsa

aKONECT project http://konect.cc



Complex networks

Figure 2 |Yeast protein interaction network.A map of protein–protein interactions
18

in

Yeast protein interaction networka Internet 2010b

Attention focussing on unexpected commonality.
aBarabási & Óltvai 2004
bOpte project http://www.opte.org/the-internet



Graphs or networks
Network is another word for a graph.
Graphs are mathematical constructs to study

relations between objects.

Graph consists of vertices (= nodes, sites) and edges (= bonds).

Vertices: elements of the graph.
Edges: relations between the elements:
cables, friendships, who eats who, hyperlink,...

Edge is building block of relational data



Networks are sparse
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Average degrees of 1203 networks in KONECT



Scale-free paradigm
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Loglog plot degree sequences WWW in-degree and Internet

B Straight line: proportion pk of vertices of degree k satisfies pk = ck−τ .

B Empirical evidence: Often τ ∈ (2, 3) reported.



Scale-free paradigm
Degree sequence (n1, n2, n3, . . .) of graph:

n1 is number of elements with degree 1,

n2 is number of elements with degree 2,

...
nk is number of elements with degree k.

Then
nk ≈ Ck−τ ,

precisely when
log nk ≈ logC − τ log k.

Approximate linear relationship log nk and log k



Network inhomogeneity
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Maximal degrees in 727 networks larger than 10000 from KONECT
Linear regression gives log dmax = 0.742 + 0.519 log n.



Small-world paradigm
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Distances in Strongly Connected Component WWW and IMDb.



Network are small-worlds
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Median typical distances in 727 networks larger than 10,000 in
KONECT



Facebook
Largest virtual friendship network:
721 million active users,
69 billion friendship links.

Typical distances on average four:

Four degrees of separation!

Fairly homogeneous (within countries, distances similar).

Recent studies:
Ugander, Karrer, Backstrom, Marlow (2011): topology
Backstrom, Boldi, Rosa, Ugander, Vigna (2011): graph distances.



Four degrees of
separation
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Distances in FaceBook in different subgraphs
Backstrom, Boldi, Rosa, Ugander, Vigna (2011)



Network statistics
B Clustering:

C =
3× number of triangles

number of connected triplets
.

Proportion of friends that are friends of one another.

B Assortativity:

ρ =

1
|En|
∑

ij∈En didj −
(

1
|En|
∑

ij∈En di

)2
1
|En|
∑

ij∈En d
2
i −

(
1
|En|
∑

ij∈En di

)2 .
Correlation between degrees at either end of edge.



Network are clustered
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Clustering coefficient in 727 networks larger than 10,000 in KONECT



Friendship paradox
Average number of friends random indi-
vidual equals∑

k

kP(D = k) =
2|E|
n
,

where |E| is number of edges.

Wikipedia: The average number of friends that a typical friend has can
be modeled by choosing, uniformly at random, an edge of the graph
and an endpoint of that edge, and again calculating the degree of the

selected endpoint.

With D? degree vertex in random edge,

E[D?] = E[D] +
Var(D)

E[D]
> E[D].

Your friends have more friends than you do!



Friendship paradox
Take vertex uniformly at random, then take one of its neighbors and
inspect its degree. Denote degrees at both sides (D1, D2). Then,

B D1 has same distribution as D, but
B D2 does not have same distribution as D?!

Still

E[D2] > E[D]!

Your friends have more friends than you do!



Centrality measures
B Closeness centrality:
Measures to what extent vertex can reach others using few hops.
Vertices with low closeness centrality are central in network.

B Betweenness centrality:
Measures extent to which vertex connects
various parts of network.

Betweenness large for bottlenecks.

B PageRank:
Measures extent to which vertex is visited by random walk.
Used in Google to rank importance in web pages.



Network science
B Complex networks modelled using

random graphs.

B Network functionality modelled by stochastic processes on them.

B A plethora of examples:

Disease spread
Information diffusion
Consensus reaching
Percolation

Synchronization
Robustness to failures
Information retrieval
Random walks...

B Also algorithms on networks important: PageRank, assortativity,
community detection,...

B Prominent part of applied math for decades to come.



Models complex networks
B Inhomogeneous Random Graphs:
Static random graph, independent edges with inhomogeneous
edge occupation probabilities, yielding scale-free graphs.
(Chapters I.6, II.2 and II.5)
[Extensions of Erdős-Rényi random graphs Chapters I.4 and I.5.]

B Configuration Model:
Static random graph with prescribed degree sequence.
(Chapters I.7, II.3 and II.6)

B Preferential Attachment Model:
Dynamic model, attachment proportional to degree plus constant.
(Chapters I.8, II.4 and II.7)

Universality??



Erdős-Rényi
Erdős-Rényi random graph is random subgraph of complete graph
on [n] := {1, 2, . . . , n} where each of

(
n
2

)
edges is occupied indepen-

dently with prob. p.

Simplest imaginable model of a random graph.

B Attracted tremendous attention since introduction 1959, mainly
in combinatorics community:

Probabilistic method (Spencer, Erdős et al.).

B Average degree equals (n− 1)p ≈ np, so choose p = λ/n to have
sparse graph.

B Egalitarian: Every vertex has equal connection probabilities.
Misses hub-like structure of real networks.



Conclusion networks
Networks useful to interpret real-world phenomena:

centrality and friendship paradox.

Many real-world networks share important features:

scale-free and small-world paradigms.

Often, suggestion of infinite-variance degrees.

This course focuses on models invented to describe
properties:

Configuration model, generalized random graph
preferential attachment model.


