Lecture A.3 IP for PSPACE

Summer Graduate School on Foundations and Frontiers of Probabilistic Proofs 2021.07.28

Interactive Proofs fo	or Polynomial	Space	
We have proved an upper bour Today we prove that this upper	nd on the power of in er bound is tight:	kractive proofs: I	PSPACE.
theorem: PSPACE S IP		· · · · · · · · · · · ·	· · · · · · · · · · ·
We follow a similar approach	as befire:	· · · · · · · · · · ·	· · · · · · · · · · ·
	last lecture	today	· · · · · · · · · · ·
① choose complete problem	UNSAT/#SAT	TQBF	
2 arithmetization	reduce to sumcheck problem	reduce to sum-product problem	. .
3 algebraic problem	sumcheck protocol	Shamir's protocol	

Quantified Boolean Formulas
A fully quantified boolean formula is a logical expression such as
$\forall x_1 \exists x_2 \exists x_3 (X_1 \land X_2) \lor X_3 , \text{ or } \forall x_1 \exists x_2 \forall x_3 (X_1 \land X_2) \lor X_3 .$
every variable is boolean formula
The expression evaluates to true or false.
Let us evaluate the examples:
1) TRUE 0,0
$X_{1} = \frac{1}{1 - 1} (1 \wedge 1) \times 1 = 1$ $X_{1} = \frac{1}{2} (1 \wedge 1) \times 1 = 1$
$X_2 X_3 (\land) \lor = $
$\frac{1}{1000} = NP \sim q \times 1 = 1 \times 1 = 1 \times 1 \times 1 \times 1 = 1 \times 1 \times 1$
$Def: TQBF = \{ \varphi(x_1,, x_n) \text{ s.t. } \forall x_1 \exists x_2 \forall x_3 \dots \varphi(x_1,, x_n) = 1 \}$
Fact: TQBF is PSPACE-complete [more on this later]

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Arithmetization for TQBF
We wish to arithmetize an expression such as: $\forall x_1 \exists x_2 \forall x_3 \dots \not (x_1, \dots, x_n).$
We arithmetize the formula and the quantifiers:
() f_{ormula} : we use the arithmetization used for $\#\text{SAT}$ where $\#(X_{1},,X_{n}) \mapsto p(X_{1},,X_{n})$ s.t. $p _{\{e_{j}\}_{j}} \equiv \# \& \ p\ \leq \ \#\ \& \deg_{b_{j}}(p) \leq \ \#\ $.
$ (\forall X_i \notin (, X_{i,}) = \# (, 0,) \land \# (, 1,)) $ so we define an operator for this: $ \prod_{X_i} p(, X_{i,}) := p(, 0,) \cdot p(, 1,) $
(3) \exists behaves like a disjunction $(\exists x; p(\dots, x; \dots) = p(\dots, 0, \dots) \vee p(\dots, 1, \dots))$
So we define an operator for this: $ \prod_{x_i} p(, X_{i,}) := [-(1-p(, 0,)) \cdot (1-p(, 1,)) \cdot (1-p(, 0,)) \cdot (1-p(, 1,)) $
In sum we get: $\prod_{X_1 \times X_2} \prod_{X_3} p(X_1,, X_n)$.
Since places = \$ and TI, II stay within \$2,13, the expressions equal over any field.

Towards a Protocol: Degree Reduction
We want a protocol to evaluate $\prod_{x_1, x_2, x_3} \prod_{x_1, x_2, x_3} p(x_1,, x_n).$
Idea: take inspiration from sunched protocol!
View sum as n operators: $\sum_{\alpha_1,\dots,\alpha_n} p(\alpha_1,\dots,\alpha_n) = \sum_{\alpha_n \in So_1} p(\alpha_1,\dots,\alpha_n)$. $\alpha_1,\dots,\alpha_n \in So_1$ $\alpha_n \in So_1$ $\alpha_n \in So_1$
In the sumcheck protocol, each round peels off 1 operator.
E.g., in round 1 the prover sends: $p_1(X_1) := \lim_{X_2 \to X_3} T \cdots p(X_{1}, \dots, X_n)$.
Problem: tie[n], p:(Xi) may have degree 2 ⁿ⁻ⁱ . 3m — exponentially large?
Degree reduction: on $\{0 13^n, X_1^3X_3 + X_2^5X_5^6 + X_4^2 \equiv X_1X_3 + X_2X_5 + X_4$ so we
can set all positive powers to 1!
New operator V := "teplace each occurrence of Xi, K>>, with X:".
This leads to a new expression:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

•

•

•

•

•

•

•

•

• • • • • •

Analysis of Shamir's Protocol
Consider a round jECK] where $O_j = TT_{X_{ij}}$ for ijECN]. [Similar to $O_j = II_{X_{ij}}$.]
$\frac{\text{Completeness}}{\text{Completeness}}: \text{Suppose that } \Pi_{X_{i_j}} O_{j+1} \cdots P(W_{i_j}, W_{i_j-1}, X_{i_j}, \dots, X_n) = \forall j_{-1}.$
The honest prover sends $p_j(X_{i_j}) := O_{j_1} \dots p(W_{i_j-1}, X_{i_j}, \dots, X_n)$. The verifiers check passes: $p_j(0)p_j(1) = \Im_{j-1}$.
Next, for every choice of $W_{ij} \in \mathbb{F}$, $Q_{j+1} \cdots p(W_{i, \dots}, W_{j+1}, W_{ij}, X_{ij+1}, \dots, X_n) = P_j(W_{ij}) = \delta_j$.
Soundness: Suppose that $TT_{X_{ij}} O_{j+i} - P(W_{1,,W_{ij-1},X_{ij},,X_n) \neq \delta_{j-1}$.
The malicious prover sends $\widetilde{p}_{j}(X_{ij})$ of degree at most 1. If $\widetilde{p}_{j} \equiv p_{j}$ (the honest polynomial) then the verifier's check fails: $\widetilde{p}_{j}(0)\widetilde{p}_{j}(V=p_{j}(0)\widetilde{p}_{j}(1)\neq J_{j-1}$.
So suppose that $\widehat{p_{j}} \not\equiv p_{j}$. By definition of p_{j} , $O_{j+i} \cdot p(W_{1},, W_{ij-1}, W_{ij}, X_{i+1},, X_{n}) = p_{j}(W_{ij})$. By definition of X_{j} , $Y_{j} = \widetilde{p_{j}}(W_{ij})$.
So the output claim is $P_{j}(W_{ij}) \stackrel{?}{=} p_{i}^{\sim}(W_{ij})$. This holds we at most $V_{[IF]}$ over $W_{ij} \in F_{ij}$.

Analysis of Shamir's Protocol
Consider a round jE[K] where $O_j = V_{X_{i_j}}$ for $i_j \in [n]$. evaluated at (w_i, w_j, w_s)
Completeness: Suppose that X_{ij} O_{ij} $P(W_{ij},,W_{ij},,W_{s},X_{su},,X_{n}) = \forall j_{-1}$ for S_{ij} .
The honest prover sends $p_j(X_{i_j}) := O_{j+1} \cdots p(W_{i_j-1}, X_{i_j}, W_{i_j+1}, \dots, W_s, X_{s+1}, \dots, X_n)$. The verifiers check passes: $(\nabla_{X_{i_j}}, P_j)(W_{i_j}) = X_{j-1}$.
Next, for every choice of $W_{ij} \in \mathbb{F}$, O_{j+1} , $p(W_{i,-1}, W_{ij}, W_{ij+1},, W_{s}, X_{s+j,,} X_{n}) = P_{j}(W_{ij}) = \mathcal{E}_{j}$.
Soundness: Suppose that $\overline{X_{ij}}$ \mathcal{O}_{ij} \mathcal{O}
The maticious prover sends $\widetilde{p}_{j}(X_{ij})$ of degree at most 3m or 2. If $\widetilde{p}_{j} \equiv p_{j}$ (the honest polynomial) then the verifier's check fails: $(X_{ij},\widetilde{p}_{j})(W_{ij}) = (X_{ij},\widetilde{p}_{j})(W_{ij}) \neq V_{ij}$
So suppose that $\widetilde{p_{j}} \not\equiv p_{j}$. By definition of p_{j} , $\mathcal{O}_{j+1} \cdots p(W_{1,\dots}, W_{j-1}, W_{1j}, W_{1j+1,\dots}, W_{s}, X_{s+1,\dots}, X_{n}) = p_{j}(W_{1j})$. By definition of X_{j} , $X_{j} = \widetilde{p_{j}}(W_{1j})$.
So the output claim is $P_{j}(W_{ij}) \stackrel{?}{=} p_{j}(W_{ij})$. This holds w.p. at most $\frac{3m}{11Fl}$ or $\frac{2}{11Fl}$ over $W_{ij} \in F$.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Analysis of Shamir's Protocol
Overall completeness:
In each round, if current claim is true then new claim is true w.p. 1. After the last round, the final cluck $(p(w_1,,w_n)=v_k)$ passes.
Ovarall Soundness:
The total soundness error is computed as follows:
$T \nabla \prod \nabla \nabla T \nabla \nabla \nabla \dots \prod \nabla \nabla \dots \nabla p(X_{1},, X_{n})$ $X_{1} X_{1} X_{2} X_{1} X_{2} X_{3} X_{1} X_{2} X_{3} \dots X_{n} X_{n} X_{n} X_{n} X_{n} X_{n} X_{n}$ $\lim_{L \to L} \bigcup_{L \to L} \bigcup$

•	•	•	•	•	•	••••	•	•	•	• •	•	•	•	•	•••			· ·	•	•••	• •		•	• •	•	• •	•	•	• •	•	•	•	•	•	• •	•	•
		•		•																			•											•		٠	•
		•		•				•											•				•					•						•		٠	٠
	•	•		•	•			•	•		•								•				•				•									٠	•
•	•	•		•	•			•	•						• •				•		•		•													•	•
•	•	•	•	•	•		•	•	•	• •		•	•	•	• •	•			•		•		•		•		•	•	• •		•	•	•	•	• •	•	•
•	•	•	•	٠	•		•	•	•	• •	•	•	•	•	• •	•		• •	•	• •	•	• •	•	• •	•	• •	•	•	• •	•	•	•	•	•	• •	•	•
•	•	•	•	٠	٠	• •	•	•	•	• •	٠	•	•	•	• •	•	• •	• •	•	• •	•	• •	•	• •	•	• •	٠	•	• •	٠	٠	۰	•	٠	• •	•	•
•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	•	•••	•	• •	•••	•	• •	•	•••	•	•••	•	• •	•	•	• •	•	•	•	•	•	• •	٠	•
•	•	•	•	•	•	•••	•	•	•	• •	•	•	•	•	•••	•	• •	•••	•	• •	•	• •	•	•••	•	• •	•	•	• •	•	•	•	•	•	• •	٠	•
•	•	•	•	•	•	•••	•	•	•	• •	•	•	•	•	•••	•	• •	•••	•	• •	• •	•••	•	•••	•	• •	•	•	• •	•	•	•	•	•	• •	٠	•
•	•	•	•	•	•	•••	•	•	•	•••	•	•	•	•	•••	•	• •	•••	•	•••	• •	•••	•	•••	•	• •	•	•	•••	•	•	•	•	•	• •	•	•
		•		•												÷																			• •	•	
		•	•	•	•							•	•	•		•									•		•	•			•	•	•	•			
•	•										•						511.5			· I · 6			<u> </u>				•			•	•	•	•	•			
	•	•	•	•	•	• •	•							_									M														
•	•	•	•	•	•	••••	•				•			. –		U	ILI	O	0	U .v		IU	ヒこ	D				•								•	
•	•	•	•	•	•	• •	•	•	•	 	—		·				ווו הכ	U T	21 גר					D1 .	•	· ·	•	•	••••	•	•	•	•	•	•••	•	•
•	•	•	•	•	•	· ·	•	•	•	 	T .(Q	B	F	۹0 is	ia s F		SF	PA		SII E-		es or	nr		et	e	•	• •	•	•	•	•	•	••••	•	•
•	•	•	•	•	•	· · ·	•	•	•	· · ·	T.(Q	B	F	is			SF	PA		SII		or	nr		et	e	•	· ·	•	•	•	•	•	· ·	•	•
•	•	•	•	•	•	· · ·	•	•	•	· · ·	T.(Q Q V	B	F	is			SF	PA		511 E-		or	nr		et	e	•	· · ·	•	•	•	•	•	· · ·	•	•
•	•	•	•	•	•	· · ·	•	•	•	· · ·	T.(Q Q C	B	F				SF	PA		511 E-			nr		et	e	•	· · ·	•	•	•	•	•	· · ·	•	•
	•	•	•	•	•	· · · · · · · · · · · · · · · · · · ·		•	•	· · ·	T.		B	F	is			SF			511 E-		or	nr		et	e	•	· · ·	•	•	•	•	•	· · ·		•
		•	•		•	· · · · · · · · · · · · · · · · · · ·		•	•	· · ·	· T.(·		B	F	is			SF			ЭП	-C	or	nr		et	e	•	· · · · · · · · · · · · · · · · · · ·			•	•	•	· · · · · · · · · · · · · · · · · · ·	· · ·	•
			•		•	· · · · · · · · · · · · · · · · · · ·			•	· · · · · · · · · · · · · · · · · · ·			B	F	is			SF			ЭП		or	nr		et	9	•	· · · · · · · · · · · · · · · · · · ·			•	•	•		· · · ·	
			•			· · · · · · · · · · · · · · · · · · ·			•	· · · · · · · · · · · · · · · · · · ·			B		is			SF			ЭП		or	nr		et	e					•		•			
			•						•				B					SF			ЭП		or	nr		et	e					•		•			
			•						•				B		is			SF			ЭП			nr		et	e					•		•			
									•				B		is			SF			ЭП		or	nr nr		et	e					•		•			
													B		is			SF	PA		ЭП		or	nr nr		et	e					•		•			
													B B C C C C C C C C C C C C C C C C C C		is			SF			ЭП		or	nr		et	e										
													B					SF					or	nr		et	e										
													B					SF					or	nr nr		et	e										

TQBF is in PSPACE
Let
Where read are 24,25. We wish to endware of in poly (m, n) space.
Define: $P_n = \Phi$ and for each $i \in \{n-1, n-2,, D\}$
$\underline{\Phi}_{i}(X_{1},,X_{n-i}) \coloneqq Q_{n-i+1} \times_{n-i+1} \cdots Q_{n} \times_{n} \not (X_{1},,X_{n-i},X_{n-i+1},,X_{n}),$
Observe that $\overline{\Phi}_{0} = \varphi$ and a recurrence holds:
$ \Phi_n = Q_1 X_1 \Phi_{n-1}(X_1), \Phi_{n-1}(X_1) = Q_2 X_2 \Phi_{n-2}(X_1, X_2), \text{ and so on,} $
This yields a full binary free on 2° leaves that we can evaluate in poly(m,n) space.
Exfor $n=3$: $\overline{\Phi}_{n}=\overline{\Phi}$
$\overline{\Phi}_{n-1}(0)$
$\overline{\Phi}_{n-2}(00) \qquad \overline{\Phi}_{n-2}(01) \qquad \overline{\Phi}_{n-2}(10) \qquad \overline{\Phi}_{n-2}(11)$
$\underline{\Phi}_{n-3}(000) \ \underline{\Phi}_{n-3}(000) \ \underline{\Phi}_{n-3}(010) \ \underline{\Phi}_{n-3}(011) \ \underline{\Phi}_{n-3}(100) \ \underline{\Phi}_{n-3}(101) \ \underline{\Phi}_{n-3}(110) \ \underline{\Phi}_{n-3}(111) $

TQBF is PSPACE-Hard
Suppose that a language L is decidable by a machine M running in space S(n)=poly(n).
G_{OAL} : given x of size n, we wish to construct a QOF Φ , of size poly(n), that is true iff x $\in L$.
Given instanu X, define:
G := "configuration graph of the computation of M on x",
The graph has 20(s(n) vertices (the possible states) and directed edges represent transitions.
There is a unique starting state Cs and unique accepting state Ca.
Observation: $X \in L \iff \exists path in G from Cs to Ca.$
We recursively define, for increasing i, a QBF \$\overline{1}\$; s.t.
$\forall configs C, C', \overline{\Phi}(C, C')=1 \iff \exists path in G from C to C' & length \leq 2'.$
The totally quantified boolean formula that we seek is $\overline{\Phi} := \overline{\Phi}_{O(S(A))}(C_{S,G})$.
We are left to show that we can construct $\overline{\Phi}_i$ with size poly (n,i) .

•

•

٠

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

٠

•

•

•

•

•

•

•