Lecture A.6 Limitations of IPs

Summer Graduate School on Foundations and Frontiers of Probabilistic Proofs 2021.08.02

IPs with Bounded Resources
Let $IP[pr=1]$ be the languages decidable via IPs where prover sends 1 bit only. Is $IP[pr=1]$ trivial (contained in P)? Probably no, since $GNI \in IP[pr=1]$ and GNI is not known to be in P.
=> even IPs with small communication can decide non-trivial larguages.
Could us hope for SATE IP [pc = $o(n)$] (pc is sublinear in # vars)? Note that SATENP S IP so the question is about whether there exists an IP for SAT that provides some efficiency benefits over the trivial IP.
To formally study this question we consider:
IP[pc,vc,vr] = "languages decidable by IP where provir sends pc bits, verifier sends vc bits, and verifier uses vr random bits (l any # of rounds)"
AM[pc,vc,vr] = "similar but with public-con IPs"
We will learn about several limitations of IPs with bounded resources.

Limitations of Bounded Resources (1/2)
Easier case: prover communication and verifier communication are bounded.
• If we additionally bound the verifier randomness then we can decide the language in deterministic exponential time.
theorem 1: IP[pc,vc,vr] C DTiME(20(pc+vc+vr) poly(n))
• Else we can decide the language in probabilistic exponential time. We prove both theorem 2: IP[pc,vc,*] S BPTIME(20(pc+vc) poly(n)) + theorems today.
=> there is a relation between communication complexity of IP and the time complexity of the language it decides
Example for 3SAT: it's unlikely that $3SAT \in IP[pc=o(n), vc=o(n)]$ because that would imply that $3SAT \in BPTIME(2^{o(n)})$, which contradicts the (randomized) Exponential Time Hypothesis (rETH).

Limitations of Bounded Resources (2/2)
Harder case: prover communication only is bounded.
· Assuming perfect completeness, we can non-deterministically decide the complement.
<u>theorem 3</u> : $IP[E_{c}=0, pc, \star, \star] \leq coNTiNE(2^{O(pc)}, poly(n))$
• Without perfect completeness, it's more complicated.
<u>theorem 4</u> : AN $[pc, *, *] \subseteq BPTINE (2^{O(pc \cdot log pc)} poly(n)) $
theorem 5: IP[pc,*,*] = BPTIME (20(pc.logpc) poly(n))NP
theorem 6: $IP[K, pc, \star, \star] \subseteq coAM$ (rounds= O(K), $pc' = 2^{pc}$, $poly(K'', n)$)
Example for GNI: We know that GNIE IP[pc=1] and GNIE AM[pc=0(n2)]. But we should not expect that GNIE AM[pc=0(logn(logn)]] unless GNIEP.

Game Tree
A transcript lof interaction) is a tuple (a, b,, ak, bk). An augmented transcript is (a, b,, ak, bk, r) where r is verifier randomness.
Fix a verifier V and instance x. The game tree $T = T(V,x)$ of V(x) is the tree of all possible augmented transcripts verifier noves b)
For i= 0,1,, k-1: • prover moves at level 2i • vecifier moves at level 2i+i
Edges from 2i to 2i+1 are possible moves by prover. Edges from 2i+1 to 2(i+1) are possible moves by verifier. Edges from 2k to 2k+1 are possible random strings consistent with transcript.

Approximating the Value Suffices
def: val(T) is the value of the root, which is reconsidely computed as follows: • value of a leaf node at location (a, b,, 9r, br, r) is the lot 1/(x, a, a, in) c for ?
 is the bit V(x, a1,, ak; t) & \$0,13 value of an internal node at level 2i is the maximum of its children's values [prover maximizes]
 value of an internal mode at level 2i+1 is the weighted average of its children's values where the weights are the probabilities of each verifier message L'his includes second to last layer where the randomness + (a) (b) (c) (c)
can be viewed as a fictitious final venifier message] If xel then val(T) > 3, else if xxl then val(T) = 1/3. So to decide if xel or xxl it suffices to approximate val(T) to within ± 1/6. (F) - 2kt
Note: can compute val(T) in poly(n) space and exp(poly(n)) time.
Today we are interested in time complexity to approximate val(T).

Theorem 1: $IP[pc, vc, vr] \subseteq DTIME(2^{O(pc+vc+vr)} poly(n))$
Let c = pc+vc+vr be a bound on communication complexity and randomness.
The number of nodes in T is $2^{O(c)}$ because there one $\leq 2^{pc+vc}$ possible transcripts and each has $\leq 2^{vr}$ possible augmentations, yielding $\leq 2^{pc+vc+vr+l}$ leaves.
Hence, can compute val(T) (exactly) in 20(c) poly(n) time, by writing out the tree explicitly and following the rewrite computation.
<u>Note:</u> we can actually set $c = pc + vr$ since the number of augmented transcripts can be bounded by $2^{pc} \cdot 2^{vr}$.
Note: how do we compute the probabilities of verifier messages? Associate to each node where verifier moves the set of all random strings consistent with transcript so far. To generate the probabilities iterate over this set, which will partition set according to verifier's move.
[We are not partitioning randomness when prover moves. Hence the same randomness I may appear in more than I haf.]

•

•

•

•

•

•

•

•

•

Theorem 2: IP [pc, vc, *] SPTIME (20(pc+vc) poly(v)) Let C=pc+vc be a bound on communication only. There are still $\leq 2^{\circ}$ possible transcripts. (Hence $\leq 2^{\circ(c)}$ internal nodes.) But now each transcript may have 2poly(n) augmentations. Hence, we cannot construct T in the allotted time (20(c) poly(n)), nor compute the probabilities of verifier messages inside the tree. Instead: will use randomness to approximate val(T) in 2 poly(n) time Probabilistic algorithm: 1. sample $R = \{t_1, ..., r_m\}$ independently in $\{o_j\}^{Vr}$, with $m = \Theta(2 \cdot c)$ 2. compute val (T[R]) where T[R] is the residual game tree obtained by omitting nodes inconsistent with R (and adjusting weights) The algorithm runs in time 2 poly(n) because $|T[R]| = 2^{O(c)}$. $|R| = 2^{O(c)}$. We are left to argue correctness.

$\frac{\text{lemma:}}{R} \left[\left \text{val} \left(T[R] \right) - \text{val} \left(T \right) \right \leq \frac{1}{10} \right] \geq \frac{99}{100}.$
proof: A concentration argument applied to the right random variables.
Define VR to be the verifier V restricted to sample randomness in R rather than 50,13".
Observe that: $val(T[R]) = [maximum acceptance probability of V^{R}(x) when]$ interacting with any prover strategy].
Fix a prover strategy P and define:
$ \Delta(\widetilde{P}, R) := \Pr[\langle \widetilde{P}, V(x;r) \rangle_{=1}] - \Pr[\langle \widetilde{P}, V(x;r) \rangle_{=1}] $ $ r \in R $ $ r \in \{o_{i}\}^{vr} $
$= \underbrace{\Pr[\langle \vec{P}, V^{R}(x) \rangle = 1]}_{\text{depends on } R} - \underbrace{\Pr[\langle \vec{P}, V(x) \rangle = 1]}_{\text{independent of } R}$
We now argue that $ \Delta(\hat{P}, R) $ is small w.h.p. over the choice of R.

$\frac{\text{claim:}}{R} \forall \vec{P}, \Pr\left[\left \Delta(\vec{P}, R) \right > \frac{1}{10} \right] \leq 2 \cdot e^{-2 \cdot \left(\frac{1}{10}\right)^2} \text{ m}.$
$p_{\underline{roof}}$
Define $2_i := \langle \widetilde{P}, V(x;r_i) \rangle$ where r_i is i-th random string in R.
The random variables Z1,, Zn are i.i.d. because ri,, rn are,
Moreover: • $\mathbb{E}[\exists i] = \Pr[\langle \vec{P}, V(x) \rangle = I]$ as each r; is random in $\{0, 1\}^{vr}$
• $\frac{Z_1 + \dots + Z_m}{m} = \Pr[\langle \widetilde{P}, V^{\mathbb{R}}(X) \rangle = 1]$ We can conclude the proof by a Checnoff bound: $\Pr[[X - \mathbb{E}[X,]] > \mathbb{E}] \leq 2 \cdot e^{-2 \cdot \mathbb{E}^* \cdot m}$
$\frac{P_{r}\left[\left \Delta(\tilde{P},R)\right > \frac{1}{10}\right] = \frac{P_{r}\left[\left P_{r}\left[\langle \tilde{P}, V^{R}(x)\rangle = 1\right] - P_{r}\left[\langle \tilde{P}, V(x)\rangle = 1\right]\right] > \frac{1}{10}\right]}{R}$
$= \Pr\left[\left \frac{2_{1}+\ldots+2_{m}}{m}-\mathbb{E}\left[\frac{2_{1}}{10}\right] \le 2 \cdot e^{-2 \cdot \left(\frac{1}{10}\right)^{2} \cdot m}\right]$

$\frac{\text{claim:}}{R} \forall \vec{P}, \Pr\left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, \forall \vec{P}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10})^2 \cdot m}, R \left[\Delta(\vec{P}, R) > \frac{1}{10}\right] \leq 2 \cdot e^{-2 \cdot (\frac{1}{10$
By a union bound on all such provers, and taking $m = \Theta(2^{\circ}.c)$ large enough,
$ \mathbb{E}_{R} \left[\exists \widehat{P} : \Delta(\widehat{P}, R) > \frac{1}{10} \right] \leq \sum_{R} \mathbb{E}_{R} \left[\Delta(\widehat{P}, R) > \frac{1}{10} \right] \leq 2^{2} \cdot 2 \cdot e^{-2 \cdot \left(\frac{1}{10}\right)^{2} \cdot m} \leq \frac{1}{100} $
We conclude the proof by noting that:
$\mathbb{P}_{R}\left[\operatorname{val}\left(\operatorname{T}[R]\right)-\operatorname{val}\left(\operatorname{T}\right) >_{h}\right] \leq \mathbb{P}_{R}\left[\exists \widehat{P}: \Delta(\widehat{P},R) >_{h}\right]\left(\langle \frac{1}{100}\right).$
Indeed, for any choice of R, the event on the left implies the event on the right:
• $Val(T[R]) > Val(T) + \frac{1}{10} \rightarrow P_{c}[\langle P_{R}, V^{P}(x) \rangle = 1] > P_{c}[\langle P_{R}, V(x) \rangle = 1] + \frac{1}{10} > P_{c}[\langle P_{R}, V(x) \rangle = 1] + \frac{1}{10}$
• val(T) > val(T[R])+ $\frac{1}{10}$ \Rightarrow $\mathbb{P}\left[\langle \overrightarrow{P}, V(x) \rangle = 1\right] > \mathbb{P}\left[\langle \overrightarrow{P}, \nabla^{R}(x) \rangle = 1\right] + \frac{1}{10} \ge \mathbb{P}\left[\langle \overrightarrow{P}, \nabla^{R}(x) \rangle = 1\right] + \frac{1}{10}$