Lecture A.8

Linear-Size IOP for Circuits

Summer Graduate School on Foundations and Frontiers of Probabilistic Proofs 2021.08.04

1

Linear-Size IOPs for Arithmetic ComputationsWe have seen how to trivially adapt the basic PCP for NTIME(T) into an IOP
with proof length T¹⁺⁰⁽⁸) and query cumplixity. NogT)^{01/8} Today we see how to achieve linear proof length for computations over large fields. Recall the following NP-complete language: <u>def:</u> RICS (F) = { (u, A, B, C)] = = ϵ Fⁿ s.t. A = B B = C_z x = (u, w) for some w }. mxn matrices $\begin{bmatrix} -a_1-1 \\ -a_2-1 \end{bmatrix}$
 $\begin{bmatrix} 1 \\ k \end{bmatrix}$ o $\begin{bmatrix} -b_1-1 \\ -b_2-1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ k \end{bmatrix}$ = $\begin{bmatrix} -c_1-1 \\ -c_2-1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ k \end{bmatrix}$ i.e. $\begin{bmatrix} \sqrt{a_1}, \sqrt{2} & \sqrt{b_1}, \sqrt{2} & -\sqrt{c_1}, \sqrt{2} & \sqrt{c_1}, \sqrt{2} & \sqrt{c_1}, \sqrt{2} &$ theorem: For "large smooth" IF, $RICS(F) \in I0P$ $S = 0, S = 0.5, K = O(logm), \Sigma = F, R = O(m), q = O(logm), r = O(logm)$ This achieves linea-size IOPs for arithmetic computations! Note: we cannot conclude that all of NP has linear-size proofs because teductions introduce overheads. Today we assume for simplicity that m=n (# equations = # variables). 2

 \sim

 \sim

 \sim

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 \sim

 \sim

 $\mathcal{A}^{\mathcal{A}}$

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 $\ddot{}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 \mathcal{A}

 \sim

 α

 ϵ

 \sim

 \sim

 \sim

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 \sim

 \sim

 $\mathcal{A}_{\mathcal{A}}$

 $\mathcal{A}^{\mathcal{A}}$

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 $\ddot{}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 \mathcal{A}

 \sim

 α

 ϵ

Checking Linear Equations

\nThe verification reads a cases to f.g: L-3 F of degree set and input (F.L,d,H,M), and wants to check the claim

\nand wants to check the claim

\n
$$
\mathcal{E}_{\text{all}} = M \cdot \hat{f}|_H
$$
\nLet a red value is a function of the graph of the graph, and it is not a common to a bivariate sum of the graph.

\nLet a red value is a red value, and a red value is a red value, and

IOP for R1CS: Soundness

IOP for R1CS: Efficiency

