Lecture A.10

Limitations of PCPs and IOPs

Summer Graduate School on Foundations and Frontiers of Probabilistic Proofs 2021.08.06

1

 \sim

 \sim

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 \sim

 \sim

 $\mathcal{A}_{\mathcal{A}}$

 $\mathcal{A}_{\mathcal{A}}$

 $\mathcal{A}_{\mathcal{A}}$

 $\mathcal{A}^{\mathcal{A}}$

 $\mathcal{L}_{\mathcal{A}}$

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 $\ddot{}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 \mathcal{A}

 \sim

 α

 \sim

 \sim

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 \mathcal{A}

 \sim

 α

Sliding Scale Conjecture

The prevailing belief is that soundness error & is advienable via an alphabet of size poly (±).
This was formulated in a conjecture by Bellare, Gold wasser, Lund, Russell in 1978:

Sliding Scale Conjecture 3 constant 90EN + E = 1

 $NP \subseteq PCP \cup C_{c} = 0, E_{s} = 8, \sum = \{0,1\}^{O(\log_{2}1)}$, $Q = poly(n)$, $q = q_{o}$, $r = O(\log_{2}1)$

Leads to asymptotically shorter succinet arguments (fewer queries for same security level).
Implies coptimal hardness of approximation results for several problems of interest.
Isude as cliffelted sparest cut, directed mul The "stiding" refers to the parameter & that can move anywhere in the interval [folya], I). <mark>Next we build *i*ntuition for why the conjecture looks cike this.</mark>
E.g., why can't we expect 6=2⁰⁰ with a large enough alphabet (~2⁰⁰)?

6

 $\sigma_{\rm{eff}}$, and the simulation of the simulation of the $\sigma_{\rm{eff}}$

 $\sigma_{\rm{eff}}$, and $\sigma_{\rm{eff}}$, and $\sigma_{\rm{eff}}$, and $\sigma_{\rm{eff}}$

 $\sigma_{\rm{eff}}$, and the second constraints of the second constraints $\sigma_{\rm{eff}}$

 \sim

 \sim

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 \sim

 \sim

 $\mathcal{A}^{\mathcal{A}}$

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 $\ddot{}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 \mathcal{A}

 \sim

 α

 \sim

 \sim

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 \sim

 \sim

 $\mathcal{A}_{\mathcal{A}}$

 $\mathcal{A}_{\mathcal{A}}$

 $\mathcal{A}_{\mathcal{A}}$

 $\mathcal{A}^{\mathcal{A}}$

 $\mathcal{L}_{\mathcal{A}}$

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 $\ddot{}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 \mathcal{A}

 \sim

 α

 \sim

 $\mathcal{A}^{\mathcal{A}}$

 $\mathcal{A}_{\mathcal{A}}$

 \sim $\mathcal{L}_{\mathcal{A}}$

 $\mathcal{L}_{\mathcal{A}}$

 $\mathcal{L}_{\mathcal{A}}$

 \sim

 $\frac{1}{2}$

 $\langle \cdot \rangle$

 $\mathcal{A}^{\mathcal{A}}$ $\mathcal{A}^{\mathcal{A}}$

 $\frac{1}{2}$

 $\mathcal{A}^{\mathcal{A}}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 \sim

 \sim $\mathcal{L}_{\mathcal{A}}$

 $\sim 10^{-1}$

 \sim

 \sim

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 $\ddot{}$

 $\hat{\mathcal{A}}$

 \mathcal{A}

 \sim

 α