Lecture B.2

Linearity Testing

(Locality of the Hadamard code)

Tom Gur

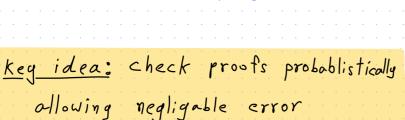
Summer Graduate School on Foundations and Frontiers of Probabilistic Proofs
July 27, 2021

Recap

Checking a proof without reading it?

Proofs have many interpretations:

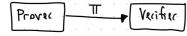
- o logical derivations from axioms Zermelo
- · "approximation of understanding" Dinur
- o "Whatever that convinces me" Even



careat: What if only one line of the proof is wrong?

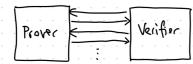
A New Model: Probabilistically Checkable Proofs

· NP represents proofs having a deterministic polynomial-time verifier



• IP represents proofs where the polynomial-time verifier has two new resources:

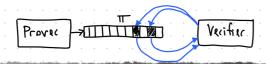
(1) randomness, and (2) interaction



Today we study a new model:

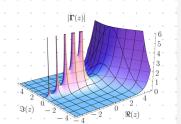
• PCP represents proofs where the polynomial-time verifier has two new resources:

(1) randomness, and (2) oracle access to proof



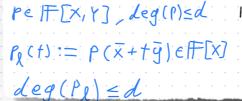
Local-to-global phenomena

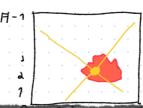
Idea: endow proof with a rich structure
that allows checking global properties
via local constraints!

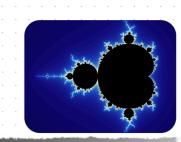


aka, the "Jam principle"

Informal example: low-degree polgnomials



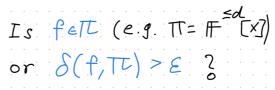




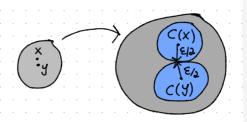
Conceptual perspectives

Property testing





Coding theory

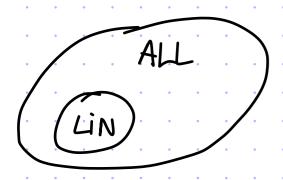


For every $x \neq y$, we have $S(C(x), C(y)) > \varepsilon$

C.g., Univariate polynomials
low-degree polynomials
Linear func. on hypercabe

Linearity Testing

A function f: F^>F is linear if $\exists c \in F'$ s.t. $f(x) = \sum_{i=1}^{n} C_i x_i$



ALL =
$$\{f: F^{\uparrow} \rightarrow F\}$$
 | $|ALL| = |F|^{|F|^{\uparrow}}$
LiN = $\{f: F^{\uparrow} \rightarrow F \text{ is linear }\}$ | $|LiN| = |F|^{\uparrow}$

We want a O(1)-query test that, given fEALL, says XES if FELIN and NO IF fox Lin. But this is impossible: if f differs in I location from FELIN then fx LIN but we cannot detect this with constant soundness error.

So we relax the question: given oracle access to feall, say YES if felin and No if f is for from Lin



We count in Hamming distance:

$$\Delta(f,g):=\Pr_{X\in\mathbb{H}^n}\left[f(X)\neq g(X)\right]$$
 and $\Delta(f,S):=\min_{g\in S}\Delta(f,g)$.

an instance of a problem in Property Testing

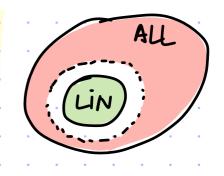
al: can un solve the relaxed problem?

A simple yet important idea: duality



A function $f: F^{\gamma} = F$ is linear if $\exists c \in F^{\gamma} = S = \sum_{i=1}^{n} C_i \times i$ Equivalently, if $\forall x, y \in F^{\gamma} = f(x) + f(y) = f(x+y)$.

So we relax the question: given oracle access to feall, say YES if felin and NO if f is far from Lin

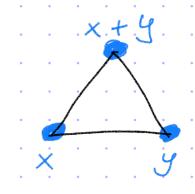


The Blum-Luby-Rubinfeld Test

A O(1)-query test for linearity testing:

VBLR := 1. sample
$$x,y \in \mathbb{F}^n$$

2. check that $f(x)+f(y)=f(x+y)$



tandomness: 2n field etts

querils: 3 locations of f

Soundness: non-trivial.

Proof intuition:

- if f is linear than each yelf votes for the same value of x: tyelf, f(x) = f(x+y) f(y)• if f is not linear than we can still consider, for each x, the most popular value:

Proof overview

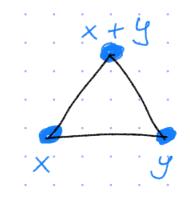
VBLR := 1. Sample
$$x,y \in \mathbb{F}^n$$

2. Check that $f(x)+f(y)=f(x+y)$

theorem: Pr[VBLR=0] = min{1/6, 1. \D(f, LiN)}

g: F"→F is defined as gf(x):= arg max | {y ∈ F" | v = f(x+y)-f(y)}|

Hhis is the plucality value



Step 1: **Bad-triangle is captured by distance from planality vote

$$Pr[V_{BLR}^{f}=0] \ge \frac{1}{2} \cdot \Delta(g_{f},f)$$

Step 2: plurality implies overwhelming majority

$$\Pr_{y \leftarrow F^n} \left[g_f(x) = f(x+y) - f(y) \right] = 1 - 2 \cdot \Pr_{y \in F^n} \left[V_{BLR} = 0 \right] \ge \frac{2}{3}$$

Step 3: plurality vote (9f) is a linear function

Analysis of BLR Test - Part 1

Let
$$g_f(x) := arg \max_{v \in \mathbb{F}} \left| v = f(x+y) - f(y) \right|$$
 be the plurality correction of f.

If go is far from f then Vole must reject with high probability:

$$P_{I}\left[V_{BLR}^{f}=0\right] = P_{I}\left[x \in S\right]P_{I}\left[V_{BLR}^{f}=0 \mid x \in S\right] + P_{I}\left[x \notin S\right]P_{I}\left[V_{BLR}^{f}=0 \mid x \notin S\right]$$

$$\geqslant \frac{|S|}{|f|^{n}} \cdot \min_{x \in S} P_{I}\left[f(x) \neq f(x + y) - f(y)\right] + 0 \geqslant \frac{|S|}{|f|^{n}} \cdot \frac{1}{2} \cdot \frac{1}{|f|^{n}}$$

Also, for every
$$x \notin S$$
 we have $\int_{f} \left[f(x) = f(x+y) - f(y) \right] > \frac{1}{2} so f(x) = g_f(x)$. This kells us that $\frac{|S|}{|f|} > \Delta(g_f, f)$.

Analysis of BLR Test - Part 2

$$\begin{array}{l}
\Pr_{y \in \mathbb{F}^n} \left[g_{\xi}(x) = f(x+y) - f(y) \right] = \Pr_{y \in \mathbb{F}^n} \left[V_{\theta} = f(x+y) - f(y) \right] \\
V \in \mathbb{F}^n \left[V = f(x+y) - f(y) \right]^2 \\
V \in \mathbb{F}^n \left[V = f(x+y) - f(y) \right]^2 \\
= \Pr_{y \in \mathbb{F}^n} \left[f(x+y) - f(y) = f(x+2) - f(2) \right] \\
\nearrow 1 - 2 \cdot \Pr_{y \in \mathbb{F}^n} \left[V_{\theta} = 0 \right].
\end{array}$$

• if
$$(y,z) \in T$$
 then $f(x+y)-f(y)=[f(x+y)+f(z-y)]-[f(z-y)+f(y)]=f(x+z)-f(z)$.

•
$$\Pr[(y,z) \notin T] \le 2 \cdot \Pr[V_{BLR} = 0]$$
 because $(y,z-y)$ and $(x+y,z-y)$ are random in F^2

theorem: Pr[VBLR=0] = min{1/6, 1/2. \D(f, LiN)}

Analysis of BLR Test - Part 3

Let
$$g_f(x) := arg max | \{y \in F' | v = f(x+y) - f(y)\}|$$
 be the plurality correction of f

$$\frac{1}{2} \sum_{z=y}^{p} \left[g_{f}(y) = f(y+z) - f(z) \right] \ge 1 - 2 \cdot P[V_{0}(z=0)] > \frac{2}{3}$$

$$P_{r} \left[g_{f}(y) = f(z) - f(z-y) \right]$$

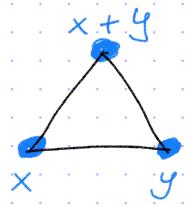
$$2-y$$
 $P_{e} \left[g_{f}(y) = f(2) - f(2-y) \right]$

$$\frac{2}{3} \int_{\frac{1}{2}}^{\frac{1}{2}} \left[\frac{g_{1}(x+y)}{g_{1}(x+y)} = \frac{f(x+y+2)}{f(x+2)} - \frac{f(2)}{f(2)} \right] \frac{2}{3}$$

$$\frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{2}} \left[\frac{g_{1}(x+y)}{g_{1}(x+2)} - \frac{f(2)}{f(2)} \right] \frac{2}{3}$$

$$g_{+}(x) = f(x+2) - f(2)$$
 $g_{+}(y) = f(2) - f(2-y)$

$$g_{f}(x+y) = f(x+z^{2}) - f(z^{2}-y)$$



Digest

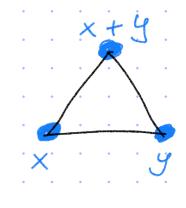
$$f:\mathbb{F}^{n}\to\mathbb{F}$$

 $V_{BLR}:=1.$ Sample $X,y\in\mathbb{F}^{n}$
2. check that $f(x)+f(y)=f(x+y)$

theorem: Pr[VBLR=0] = min{1/6, 1. \D(f, LiN)}

g: F"→F is defined as gr(x):= arg max | {y ∈ F" | v = f(x+y)-f(y)}|

Hhis is the plucality value



Step 1: *Bad-triangle is captured by distance from planality vote

$$Pr[V_{BLR}^{f}=0] \ge \frac{1}{2} \cdot \Delta(g_{f},f)$$

Step2: plurality implies overwhelming majority

$$\Pr_{y \in \mathbb{F}^n} \left[g_f(x) = f(x+y) - f(y) \right] = 1 - 2 \cdot \Pr_{x \in \mathbb{F}^n} \left[V_{BLR} = 0 \right] \ge \frac{2}{3}$$

Step 3: plurality vote (9f) is a linear function

Discussion

Theorem 1.30. Suppose the BLR Test accepts $f : \mathbb{F}_2^n \to \mathbb{F}_2$ with probability $1 - \epsilon$. Then f is ϵ -close to being linear.

Proof. In order to use the Fourier transform we encode f's output by $\pm 1 \in \mathbb{R}$; thus the acceptance condition of the BLR Test becomes f(x)f(y) = f(x+y). Since

$$\frac{1}{2} + \frac{1}{2}f(\mathbf{x})f(\mathbf{y})f(\mathbf{x} + \mathbf{y}) = \begin{cases} 1 & \text{if } f(\mathbf{x})f(\mathbf{y}) = f(\mathbf{x} + \mathbf{y}), \\ 0 & \text{if } f(\mathbf{x})f(\mathbf{y}) \neq f(\mathbf{x} + \mathbf{y}), \end{cases}$$

we conclude

$$\begin{aligned} 1 - \epsilon &= \mathbf{Pr}[\text{BLR accepts } f] = \underset{\boldsymbol{x}, \boldsymbol{y}}{\mathbf{E}} \left[\frac{1}{2} + \frac{1}{2} f(\boldsymbol{x}) f(\boldsymbol{y}) f(\boldsymbol{x} + \boldsymbol{y}) \right] \\ &= \frac{1}{2} + \frac{1}{2} \underset{\boldsymbol{x}}{\mathbf{E}} [f(\boldsymbol{x}) \cdot \underset{\boldsymbol{y}}{\mathbf{E}} [f(\boldsymbol{y}) f(\boldsymbol{x} + \boldsymbol{y})]] \\ &= \frac{1}{2} + \frac{1}{2} \underset{\boldsymbol{x}}{\mathbf{E}} [f(\boldsymbol{x}) \cdot (f * f)(\boldsymbol{x})] \qquad \text{(by definition)} \\ &= \frac{1}{2} + \frac{1}{2} \sum_{S \subseteq [n]} \widehat{f}(S) \widehat{f * f}(S) \qquad \text{(Plancherel)} \\ &= \frac{1}{2} + \frac{1}{2} \sum_{S \subseteq [n]} \widehat{f}(S)^3 \qquad \text{(Theorem 1.27)}. \end{aligned}$$

We rearrange this equality and then continue:

$$1-2\epsilon = \sum_{S\subseteq[n]} \widehat{f}(S)^{3}$$

$$\leq \max_{S\subseteq[n]} \{\widehat{f}(S)\} \cdot \sum_{S\subseteq[n]} \widehat{f}(S)^{2}$$

$$= \max_{S\subseteq[n]} \{\widehat{f}(S)\} \qquad \text{(Parseval)}.$$