Lecture B.4

FRI Protocol (Fast Reed-Solomon IOP)

Tom Gur

Summer Graduate School on Foundations and Frontiers of Probabilistic Proofs 2021.07.29

Recap

Linearity Testing A function $f: \mathbb{F}^{n} = \mathbb{F}$ is linear if $\exists c \in \mathbb{F}^{n}$ s.t. $f(x) = Z_{i=1}^{n} C_{i} x_{i}$. Equivalently, if $\forall x, y \in \mathbb{F}^{n} f(x) + f(y) = f(x+y)$. ALL $ALL = \{f: \mathbb{F}^{n} = \mathbb{F}\}$ $ALL = I\mathbb{F}^{ \mathbb{F}^{n} }$ $ALL = \{f: \mathbb{F}^{n} = \mathbb{F}^{n}\}$ $IALL = I\mathbb{F}^{ \mathbb{F}^{n} }$ $In = \{f: \mathbb{F}^{n} = \mathbb{F}^{n} \in I_{i} \times I_{i} \times I_{i} = I\mathbb{F}^{n}\}$ We want a O(i)-query test that, given feall, says $\forall s$ if fell N and NO if $f \notin LiN$. But this is impossible: if f differs in 1 location from $f \in LiN$ than $f \notin LiN$ but we cannot detect this with constant sound ass prove. So we relax the question: given oracle access to $f \in ALL$, say $\forall s$ if $f \in LiN$ and NO if f is far from LiN We count in Hamming distance: $\Delta(f, g) := \Pr_{x \in \mathbb{F}^{n}} [f(x) + g(x)]$ and $\Delta(f, S) := \min_{g \in S} \Delta(f, g)$. A(I, con un solve the relaxed problem?	Low-Degree Testing Recall the goal of linearity testing: oracle: The goal of low-degree testing is: input: F, n, d oracle: f:F ⁿ >F requirement: YES w.P.1 if fe LD(F, n, d) YES w.p. 1/2 if f is %o-far from What does degree d mean? • total degree (e.g. in this case LD(F, n, tols • individual degree (e.g. in this case LD(F, n, tols • individual degree (e.g. in this case LD(F, n, tols • individual degree (e.g. in this case LD(F, n, tols • individual degree (e.g. in this case LD(F, n, tols • individual degree (e.g. in this case LD(F, n, tols • individual degree (e.g. in this case LD(F, n, tols • Individual degree (e.g. in this case LD(F, n, tols • Individual degree (e.g. in this case LD(F, n, tols • Individual degree (e.g. in this case LD(F, n, tols • Individual degree (e.g. in this case LD(F, n, tols • Individual degree (e.g. in this case LD(F, n, tols • Individual degree (e.g. in this case LD(F, n, tols • Individual degree (e.g. in this case LD(F, n, tols • Individual degree (e.g. in this case LD(F, n, tols • Individual degree (e.g. in this case LD(F, n, tols • Individual degree (e.g. in this case LD(F, n, tols • Individual degree (e.g. in this case LD(F, n, tols • Individual degree (e.g. in this case LD(F, n, tols • Individual degree (e.g. in this case LD(F, n, tols • Individual degree (e.g. in this case LD(F, n, tols • Individual degree (e.g. in this case LD(F, n, tols • Individual degree (e.g. in this case LD(F, n, tols) • Individual degree (e.g. in this case LD(F, n, tols) • Individual degree (e.g. in this case LD(F, n, tols) • Individual degree (e.g. in this case LD(F, n, tols) • Individual degree (e.g. in this case LD(F, n, tols) • Individual degree (e.g. in this case LD(F, n, tols) • Individual degree (e.g. in this case LD(F, n, tols) • Individual degree (e.g. in this case LD(F, n, tols) • Individual degree (e.g. in this case LD(F, n, tols)) • Individual degree (e.g. in this case LD(F, n, tols)) • Individual degree (e.g. in this case LD(F, n, tols)) • Individual deg	f: $\mathbb{F}^n \rightarrow \mathbb{F}$ nent: YES w.p. 1 if $f \in LiN(\mathbb{F},n)$ YES w.p. $\frac{1}{2}$ if f is $\frac{1}{10}$ -for from $LiN(\mathbb{F},n)$ $LD(\mathbb{F},n,d)$ L
Local-to-global phenomena Idea: endow proof with a rich stracture that allows checking global properties via local constraints? aka, the "Jam principle"	Property testing	Coding theory
$\int \int $	$I_{s} f \in T (e.g. T = F (x))$ or $\delta(f, T) > \varepsilon$	For every $x \neq g$, we have S(C(M), C(g)) > E e.g., Univariate polynomials low-degree polynomials Linear func. on hypercube

2

The Reed--Solomon Code $RS[F,L,d] = \{f: L \rightarrow F \text{ s.t. } deg(\hat{f}) \leq d\}$: locality O(d) w.r.t. dim d+1 Why wouldn't we want to use Reed-Maller instead? $RM[H,L,d,n] := \{f:L^n \rightarrow H \text{ s.t. } deg(\hat{f}) \leq d\}$ $f(\bar{z})$ k f_{op} f_{op} f_{oc} locality o(d) w.r.t. $dim O(d^n)$ Key consideration: redundancy Hadamard: exp, Reed-Muller: poly, Reed-Solomon: linear 7

Proximity Testing to the ReedSolomon Code
We seek a proximity test for $RS[F,L,d] = \{f: L \rightarrow F \text{ s.t. } deg(\hat{f}) \leq d\}$:
① <u>completeness</u> : if $f \in RS[IF,L,d]$ then the lest accepts w.p. 1 ② <u>soundness</u> : if f is S-far from RS[IF,L,d] then the lest accepts w.p. $\leq E(S)$ (with $d = uL(V)$) ④ <u>soundness</u> : if f is S-far from RS[IF,L,d] then the lest accepts w.p. $\leq E(S)$ ($\rightarrow E(S) = O(V)$)
We have seen that: • d+2 queries suffice to achieve $\mathcal{E}(\mathcal{S}) = 1 - \mathcal{S}$ • d+2 queries are necessary to achieve $\mathcal{E}(\mathcal{S}) < 1$
This is ok when $d \ll L $ but in our case $d = \Theta(n)$ and $ L = \Theta(d)$, so we need query complexity that is much less than d (ideally, poly(logd) or O(1)).
What do we do? The above considerations are about proximity tests only. We have the option of asking the prover's help, which leads us to a proximity proof.

Interactive Oracle Proofs	•
Recall that NP is the model for traditional mathematical proofs:	•
Prover Verifier	•
We have studied two different extensions:	•
IP: add randomness PCP: & oracle arcess to proof	•
Prover Verifier	•
Todays we consider the common extension between the two:	•
Interactive Oracle Proof (IOP)	•
add randomness, interaction, and oracle access to proof	•
Prover Vecifier	•
$\ldots \ldots \vdots \ldots \ldots \vdots \ldots \ldots \ldots \ldots$	5

Proximity Proofs for the ReedSolomon Code		
We say that (P,V) is an IOP of proximity (IOPP) for RS[F,L,d] if:		
() <u>completeness</u> : if fers[F,L,d] then $\Pr[\langle P(f), V^{f} \rangle = 1] = 1$ (2) <u>soundness</u> : if f is 6-far from RS[F,L,d] then $\forall \hat{P} \Pr[\langle \hat{P}, V^{f} \rangle = 1] \leq \mathcal{E}(\delta)$		
An IDPP for RS look like this: Prover Prover T_1 T_1 T_2 T_1 T_1 T_1 T_1 T_1 T_2 T_1 T_1 T_2 T_1 T_2 T_1 T_2 T_1 T_2 T_2 T_1 T_2 T		
$\frac{\text{theorem}}{\text{RS}[F,L,d] \in IOPP} \begin{bmatrix} \varepsilon_{c}=0, \ k=O(\log d), \ l=O(1L1), \ pt=O(1L1) \\ \varepsilon_{s}(s)="1-s", \ q=O(\log d), \ vt=O(\log L), \ r=O(\log d) \end{bmatrix} (\text{fast Reed-Solomon IOPP})$		
This INPP for RS is important in practice and taises many elegant questions in coding theory.		

Inspiration from the Fast Fourier Transform			
We can write any polynomial $\hat{f}(x) \in F[x]$ as $\hat{g}(x^2) + x \hat{h}(x^2)$, where \hat{g} are the even coefficients and \hat{h} are the odd coefficients.			
The (radix-z) FFT is based on the following divide-and-conguer approach: Evaluate $\hat{f}(x)$ on $L = \langle w \rangle$: 1. Evaluate $\hat{g} := even(\hat{f})$ on $L^2 = \langle w^2 \rangle$ 2. Evaluate $\hat{h} := odd(\hat{f})$ on $L^2 = \langle \omega^2 \rangle$ 3. For $i = 0, 1,, \frac{11}{2} - 1$; $\hat{f}(w^i) := \hat{g}(w^{2i}) + w^i \hat{h}(w^{2i})$, $\hat{f}(-w^i) := \hat{g}(w^{2i}) - w^i \hat{h}(w^{2i})$			
The nested structure $L \ge L^2 \ge L^4 \ge$ enables recursion. Each of the two subproblems have half the size, and the new rision depth is $\Gamma = \log d$. The total number of operations is $T(1LI) = 2 \cdot T(1LI/2) + O(1LI) = O(1LI \log LI)$.			
Back to low-degree testing: $f: L \rightarrow F$ $deg(\hat{f}) \stackrel{\text{deg}}{\leftarrow} deg(\hat{g}), deg(\hat{h}) \stackrel{\text{deg}}{\leftarrow} d/_2 \begin{bmatrix} for \ \hat{g}:=even(\hat{f}) \end{bmatrix}$			
Can we devise a divide-and-conquer approach to low-degree testing? We use strictly less than d			

Attempt 1: Recurse on Each Subproblem			
P((FF,L,d),f) Compute ĝ:= even(f) and ĥ:= odd(f)	f;L→F	V(([F,L,d]))	
and set $g := \hat{g} _{L^2}$ and $h := \hat{h} _{L^2}$	$g_{i}h: L^{2} \rightarrow \mathbb{F}$	sample $\mu \in L$ and check $f(\mu) \stackrel{?}{=} g(\mu^2) + \mu h(\mu^2)$	
	te course to test that $g \in RS[F, L^2, \frac{4}{2}]$ $h \in RS[F, L^2, \frac{4}{2}]$		
<u>Problem</u> : linear number of queries $(q(d) = 3 + 2q(d_2) = \oplus(d))$			
Problem: it's not even a test because distance decays in each recursion			
f = 40% Such an example exists even if $\forall M = 1\%$ 40 errors out of 100 locations $\delta = 40\%$ Such an example exists even if $\forall M \in L f(\mu) = g(\mu^2) + \mu h(\mu^2)$			
9 10 errors out of so locations $\delta = 20\%$ h 10 errors out of so locations $\delta = 20\%$ 10 errors out of so locations $\delta = 20\%$ 10 errors out of so locations $\delta = 20\%$			
The distance could drop as $\delta \rightarrow \delta/2 \rightarrow \delta/4 \rightarrow \dots \rightarrow \delta/2^r$. We cannot sustain $t = w(1)$ rounds of interaction.			

Attempt 2: Fold and Recurse		[1/2]
$P((\mathbb{F}, L, d), f)$	f;L→Æ	$V((\mathbb{F},L,d))$
Compute $\hat{g}:=even(\hat{f})$ and $\hat{h}:=odd(\hat{f})$ and set $g:=\hat{g} _{L^2}$ and $h:=\hat{h} _{L^2}$	$g_ih: L^2 \rightarrow \mathbb{F}$	sample $\mu \in L$ and check $f(\mu) \stackrel{?}{=} g(\mu^2) + \mu h(\mu^2)$
Set fx = g+xh	$\frac{\alpha}{f_{\alpha}: L^{2} \to \mathbb{F}}$	sample $\alpha \in \mathbb{F}$ check $f_{\alpha}(\mu^2) = q(\mu^2) + \alpha h(\mu^2)$
	Here $F_{12} \in RS[F, L^2, \frac{4}{2}]$	
The number of queries is now But does tandom folding make Let's consider the noise-free	sense?) = O(logd). This is good.
 completeness: if deg(f)<d 2="" 2<="" deg(ĝ)<d="" deg(ĝ+aĥ)<d="" deg(ĥ),="" li="" so="" ta="FF" then=""> "soundness": if deg(f)>d then either deg(ĥ)>d/2 or deg(ĝ)>d/2, in which case Pr[deg(ĝ+aĥ)>, d/2]>1-1F1 </d>		
		> as there is I choice of & for which the highest-degree monomial is not in ĝtaĵ

Attempt 2: Fold and Re	ecurse	[2/2]
Compute $\hat{g}:=even(\hat{f})$ and $\hat{h}:=odd(\hat{f})$ and set $g:=\hat{g} _{L^2}$ and $h:=\hat{h} _{L^2}$	$L \rightarrow \mathbb{F}$ $L^{2} \rightarrow \mathbb{F}$ d $L^{2} \rightarrow \mathbb{F}$	V((IF,L,d)) sample $\mu \in L$ and check $f(\mu) \stackrel{?}{=} g(\mu^2) + \mu h(\mu^2)$ sample $\alpha \in IF$ check $f_{\alpha}(\mu^2) = g(\mu^2) + \alpha h(\mu^2)$
	functions We do l	the cheating prover decreases distance by sending g.h., for that are inconsistent? noure consistency checks in each round for this.
h S=lo%. gtah (intuitively) d=20%. Folding seems to address the prior problem by preserving distance.	Since r= (i) make	nally, we have to (ot least) pay an error of r. Ir.[a round's ansistency check fails] $D(\log d)$ we have two options: $w(1)$ queries/round (leads to $w(\log d)$ grenies overall) the protocol 10

•

The FRI Protocol				
Two changes from prior protocol: drop g,h as they are not needed; do a single multi-round consistence check.				
Given $f: L \rightarrow \mathbb{F}$ and $\alpha \in \mathbb{F}$, define $\operatorname{Fold}(f, \alpha): L^2 \rightarrow \mathbb{F}$ as $\operatorname{Fold}(f, \alpha)(\delta^2):=\frac{f(\delta)+f(-\delta)}{2}+\alpha \cdot \frac{f(\delta)-f(-\delta)}{2\delta}$.				
$\frac{ emma: Fold[f_x](x) = even(\hat{f})(x) + x oda(\hat{f})(x)}{proof} + x \frac{\hat{f}(x) - \hat{f}(-x)}{2} = Fold(f_x)(x^2) = \frac{\hat{f}(x) + \hat{f}(-x)}{2} + x \frac{\hat{f}(x) - \hat{f}(-x)}{2x} = Fold(f_x)(x^2).$				
These changes lead to	o the FRI p	rotocol:		
P((F,L,d),f.)	fo∶L→FF	V((F,L,d))	query pattern:	
f1:= Fold (f0,90)	$\frac{\alpha_{0}}{f_{1}:L^{2}\rightarrow \mathbb{F}}$	 interaction randomness! ∞o, ∞, ∞, ∞, ∞, ~ F consistency check randomness: M ∈ L [can repeat] times] 	folu) fol-ru)	
$f_2 := F_0 ld(f_1, \alpha_1)$	$ f_2: L^2 \rightarrow \mathbb{F} $	• consistency check on fo, fi,, fr: $f_1(M^2) \stackrel{?}{=} \frac{f_0(M) + f_0(-M)}{2} + d_0 \cdot \frac{f_0(M) - f_0(-M)}{2M}$	$f_1(\mu^4) f_1(-\mu^4)$ $f_2(-\mu^4) f_2(-\mu^4)$	
f _F := Fold(f _{r-1} , dr-1)	$ \frac{\alpha_{r-1}}{f_r: L^2 \to \mathbb{F}} $	$f_{2}(\mu^{4}) \stackrel{?}{=} \frac{f_{1}(\mu^{2}) + f_{1}(-\mu^{2})}{2} + \alpha_{1} \cdot \frac{f_{1}(\mu^{2}) - f_{1}(-\mu^{2})}{2\mu^{2}}$ $\stackrel{?}{=} \frac{f_{r-1}(\mu^{2^{r-1}}) + f_{r-1}(-\mu^{2^{r-1}})}{2} + \alpha_{r-1} \cdot \frac{f_{r-1}(\mu^{2^{r-1}}) - f_{r-1}(-\mu^{2^{r-1}})}{2\mu^{2^{r-1}}}$	$f_{r-1}(M^{2^{r-1}}) = f_{r-1}(-\mu^{2^{r-1}})$	
· · · · · · · · · · · · · · ·	· · · · · ·	• last function is low degree: $f_r \in RS[F, L^{2^r}, d/2^r]$	Frly 1	

f₀∶L→Æ V((⊮,∟,d)) P((F,L,d),f)Completeness · interaction randomness! do, di, ..., dr.1 ← IF (do fi:= Fold (fo,qo) · consistency check randomness: M = L [times] fi: L² → F claim: FRI has porfect completeness · consistency check on fo, fi, ..., fr: <<u>≺</u>√. fz:=Fold (fi, x,) $f_1(\mu^2) \stackrel{?}{=} \frac{f_0(\mu) + f_0(-\mu)}{2} + d_0 \cdot \frac{f_0(\mu) - f_0(-\mu)}{2\mu}$ $f_2: L' \rightarrow \mathbb{F}$ proof: Suppose that for RS[F, L, d], $f_{2}(M^{2}) \stackrel{?}{=} \frac{f_{1}(M^{2}) + f_{1}(-M^{2})}{2} + \alpha_{1} \frac{f_{1}(M^{2}) - f_{1}(-M^{2})}{2M^{2}}$ $\mathbf{A}_{\mathbf{r}-\mathbf{l}}$ so that deg(fo)<d. fr:= Fold(fr-1,dr-1) $f_{r}(M^{2^{r}}) \stackrel{?}{=} \frac{f_{r-1}(M^{2^{r-1}}) + f_{r-1}(-M^{2^{r-1}})}{2} + \alpha_{r-1} \cdot \frac{f_{r-1}(M^{2^{r-1}}) - f_{r-1}(-M^{2^{r-1}})}{2M^{2^{r-1}}}$ Fix any choice of interaction randomness: • last function is low degree: $f_r \in RS[F, L^2, d/2^c]$ $\alpha_{0,\alpha_{1},\ldots,\alpha_{r-1}} \in \mathbb{F}.$ For every i=1,...,r, define $\hat{f}_i(x):= even(\hat{f}_{i-1})(x) + \alpha_{i-1} \cdot odd(\hat{f}_{i-1})(x)$. Since $deg(\hat{f}_0) < d$ we know that $deg(\hat{f}_i) < \frac{d}{2}i$ and thus $\hat{f}_i := \hat{f}_i|_{2^i} \in RS[F, L^{2^i}, \frac{d}{2^i}]$. Observe that f:= Fold(fi-1,di-1) because $\forall x \in L^{2^{i-1}} \quad f_i(x^2) = eve_n(\hat{f}_{i-1})(x^2) + \alpha_{i-1} \cdot odd(\hat{f}_{i-1})(x^2) = \frac{f_{i-1}(x) + f_{i-1}(x)}{2} + \alpha_{i+1} \cdot \frac{f_{i-1}(x) - f_{i-1}(x)}{2x}$ Hence for every me L all the verifier consistency checks pass. Finally, fr E RS [F, L2, d/2,] as argued above, so the verifier's degree check also passes. Moreover: • prover time is O(1L1+1L1/2+1L1/4+...+1L1/21-1)= O(1L1) • verifier time is $O(++1L1/2^{-}) = O(10qd)$ when r = logd and |L| = (H(d))• query complexity is $O(++1L1/2^{r}) = O(10qd)$ when r = logd and |L| = (H)(d)

Soundness	$f_0: L \rightarrow F$ $V((F, L, d))$ \bullet interaction randomness! $\alpha_0, \alpha_1, \dots, \alpha_{r-1} \leftarrow F$		
We will see this lower bound on soundness error:	$f_{1}:L^{2} \rightarrow \mathbb{F} \text{consistency check randomness: } M \in L \begin{bmatrix} can repeat \\ k \text{ times} \end{bmatrix}$ $consistency check on fo, f_{1},, f_{r}:$ $f_{2}:L^{4} \rightarrow \mathbb{F} f_{1}(M^{2}) \stackrel{?}{=} \frac{f_{0}(M) + f_{0}(-M)}{2} + d_{0} \cdot \frac{f_{0}(M) - f_{0}(-M)}{2M}$		
<u>claim</u> : there is a prover strategy to make the verifier arcept some δ -far fo w.p. $\geq \max \left\{ \prod_{i \in I} (1-\delta)^t \right\}$	$P(1,4) \stackrel{?}{=} f_1(M^2) + f_2(-M^2) + f_2(-M^2)$		
arcept some d-far fo w.p. $\geq \max \{ \{ I, (I-S) \} \}$	$f_{1}: L^{2} \rightarrow \mathbb{F} \qquad f_{1}(\mu^{2^{k_{1}}}) = \frac{f_{1}(\mu^{2^{k_{1}}}) + f_{1}(\mu^{2^{k_{1}}})}{2} + f_{1}(\mu^{2^{k_{1}}}) + f_{1}(\mu^{2^{k_{$		
The upper bound is, to a first order, very close:	• last function is low degree: $f_r \in RS[F, L^{2^r}, d/2^r]$		
$O\left(\frac{14}{1Fl}\right) + \left(1 - \min\left\{S, C\left(\frac{1}{14}\right)\right\}\right)^{t}$ $(1 - \min\left\{S, C\left(\frac{1}{14}\right)\right\}\right)^{$			
The proof relies on fundamental statements about worst-case vs average-case distances to subspaces. Tighter upper bounds are known (which rely on tools from algebraic geometry and algebraic function fields), which lead to more efficiency in practice.			
A tight soundness analysis remains an exciting open	Problem! 13		