Lecture B.7

Poly-size PCP

(The low-degree extension PCP)

Tom Gur

Summer Graduate School on Foundations and Frontiers of Probabilistic Proofs August 3, 2021

1

 \sim

 \sim

 \sim

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 \sim

 $\hat{\mathcal{A}}$

 $\ddot{}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 \mathcal{A}

 \sim

 α

 ϵ

 \sim

 \sim

 \sim

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 \sim

 \sim

 $\mathcal{A}^{\mathcal{A}}$

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 $\ddot{}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 \mathcal{A}

 \sim

 α

 ϵ

Part 1: From m Equations to 1 Equation

<u>Jemma:</u> there is a probabilistic algorithm T s.t. for IFFI=polylog(m) 1 T (pr., pm) uses O (login) random bits and outputs a quadratic equation p(x,, xn) 2 if $\exists \alpha s.t. p.(a) = ... = p_m(a) = 0$ then $\mathbb{F}_{\alpha}[\top(p_{1}...p_{m},r)(a) = 0] = 1$ 3) if p_1, \ldots, p_m are unsatisfield then $f: [\exists \alpha \top (\rho_1, ..., \rho_m)_{\alpha}] (a) = 0$ \leq /2.

Idea #1: T samples je Im 2 and outputs ps This uses little randomness (logm bits) but the soundness error is large (1-1). Idea #2: T samples n, n EF and outputs p= Zjecms rip;
This has small sound ness error (1) but uses too much randomnes (n elts).
I This is essentially what we did inside the LPCP for QESATCIF). I If me sample r., rm Ette the sounders error is ok (1/2) but not rendomnes (n bits). Idea #3! T samples re IF and outputs p = Zjecm] r¹p; This use little randomness (1) ett) but now requires the field to be large:
The soundness error is <u>me</u> so we need little JC(m) 6

Part 1: From m Equations to 1 Equation

<u>Jemma:</u> there is a probabilistic algorithm T s.t. for small-enough IF 1 T (p1,..., pm) uses 0 (log m) pandom bits and outputs a quadratic equation p(x1,.., xn) D if $\exists \alpha$ st. p. (a) = ... = $\rho_m(\alpha) = 0$ then $\mathbb{F}_{n} [\top(\rho_{1}, \ldots, \rho_{m}, r)(\alpha) = 0] = 1$ 3) if p_1, \ldots, p_m are unsatisfield then $f: [a \cap (p_1, \ldots, p_m); 0]$ (a) = $a \leq b_2$.

proof:

The transformation T samples river roc F and outputs $\frac{\rho = \sum_{0 \le j_1, \dots, j_{s_c} < |H| \le 1} r_i^{j_1} \cdots r_s^{j_{s_c}} \cdot p_{j_1 \dots j_{s_c}}}{1 - \sum_{0 \le j_1, \dots, j_{s_c} < |H| \le 1} r_i^{j_1} \cdot \cdots \cdot r_{s_c}}}{1 - \sum_{i \ne j} r_i^{j_1} \cdot \cdots \cdot r_{i_c}} = \frac{H_e^{s_c}}{1 - \frac{1}{1 - 1}}$ H_{e}^{se} The annound of randomness is: $|fF|^{S_e} = O((poly log m) log O(log m)) = 2^{O(log m)}$ = poly/m).

7

Part 2: Low-Degree PCP for 1 Equation
\n
$$
\int \mathbb{R}p
$$
 1: $p(a) = 0 \Leftrightarrow \sum_{x,p \in H_{i}^{k}} q(x,p) = 0$ for $q(y,z) := \hat{c}(y,z) \cdot \hat{c}(y) \cdot \hat{d}(z)$
\n $\int \mathbb{R}p$ 2: probability chuk the arithmetic and starting $q(x,p) = 0$
\n $P(p, a)$ or $p \cdot 15$ T := (\hat{a}, π_{sc})
\n $\int \frac{\pi_{sc}}{\pi_{sc}} \text{ is real table}$
\n $\int \frac{\pi_{sc}}{\pi_{sc}} \text{ is an odd number of } \frac{\pi_{sc}}{\pi_{sc}}$
\n $\int \frac{\pi_{sc}}{\pi_{sc}} \text{ is an odd number of } \frac{\pi_{sc}}{\pi_{sc}}$
\n $\int \frac{\pi_{sc}}{\pi_{sc}}$
\

 \mathcal{L}

 $\hat{\mathcal{L}}$

 \mathcal{L}

 $\hat{\mathcal{L}}$

 $\hat{\mathcal{L}}$

 \mathcal{L}

 \mathcal{L}

 \mathcal{L}

 \mathcal{L}

 \mathcal{A}

 \mathcal{L}

 $\mathcal{L}^{\mathcal{L}}$

 \mathcal{L}

 α

÷.

 $\hat{\mathcal{L}}$

Ġ,

 $\hat{\mathcal{L}}$

 $\hat{\mathcal{L}}$

 \mathcal{L}

 $\hat{\mathcal{A}}$

 $\hat{\mathcal{L}}$

 $\hat{\mathcal{L}}$

 $\mathcal{L}^{\mathcal{L}}$

 $\hat{\mathcal{L}}$

 $\hat{\mathcal{L}}$

J.

 $\hat{\mathcal{L}}$

 \mathcal{L}

 \mathcal{L}

Low-Degree PCP for Quadratic EquationsWe put Part1 and Part 2 together: $V((\rho_1,...,\rho_m))_{n \geq 1}$ $\Gamma((p_1, p_m), a) =$ 1, sample $r \in \pi^{s_e}$ and compute 1. For every $f \in \mathbb{F}^2$: $P_{r} := T(p_{1},...,p_{m},r)$ $\mathcal{F}_{\text{S}}[r]$ \cdot $p_{r} = T(\rho_{1},...,\rho_{m},r)$ $\left|\left\langle \right\rangle \right\rangle$ 2. run sumcheck to check that · Msc[r] := eval table THE REAL PROPERTY $\sum_{\alpha'\beta\in H_{v}^{S_{v}}} \hat{C}_{r}(\alpha'\beta)\hat{a}(\alpha)\hat{a}(\beta)=0$ for suncheck to show p(a)=0 · output Trsc[r] 2. output $\hat{\alpha}: \mathbb{F}^{S_v} \rightarrow \mathbb{F}$ $\begin{matrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{matrix}$ $\sqrt{1} V_{sc}(F_{r}H_{v,2Sv,0})$ $[LDE & \alpha:LnJ\rightarrow F]$ Completeness: if pilot == pm(a) then tre It's pr(a) = 0 and so $\sum_{\alpha,\beta\in H_{\alpha}} s_{\alpha}$ $\hat{c}_{r}(\alpha,\beta)$ $\hat{\alpha}(\alpha)\hat{\alpha}(\beta)$ = 0 $Soudness$: if $(p_1,...,p_m)$ is unsatisfiable then, except $w.p. \leq O(\frac{Se|He|}{1F1}) = O(\frac{log^2 m}{1F1})$, so is pc . Hence, \forall $\hat{\alpha}$ that is LDE, $\sum_{\alpha,\beta\in H^S} \hat{c}_r(\alpha,\beta) \hat{\alpha}(\alpha) \hat{\alpha}(\beta) \neq 0$. So, \forall $\hat{\pi}_{\alpha}$, the sumchick
accepts $w.\rho$, at most $\mathcal{O}(\frac{\text{SvHHv1}}{H\pi}) \leq \mathcal{O}(\frac{\log^n n}{H\pi})$. So $|F| = \Omega(\rho_0\sqrt{log^n logn})$ suffices. 10

 \sim

 \sim

 \sim

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 \sim

 \sim

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 $\ddot{}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\hat{\mathcal{A}}$

 \mathcal{A}

 \sim

 α

 ϵ

At Last: PCP for Quadratic Equations $\frac{H}{1}$ eorem: QESAT(FF) S PCP[$\epsilon_{s=0}, \epsilon_{s=0.5}, \Sigma$ =FF, l = $|F|^{O(\frac{log n}{log log n})}$, q= poly(logn), r=O(logn)] $\bigvee\big(\big(\rho_1,...,\rho_m\big)\big):=$ $L^{(p_1,...,p_m)}, \alpha) =$ 1. Somple $r \in \mathbb{F}^{s_e}$ and compute 1. For every $t \in \mathbb{F}^3$: \overline{J} sc $[i]$ $P_{r} := T(p_{1},...,p_{m},r).$ \cdot $p_r = T(p_1, ..., p_m; r)$ 2. run sumcheck to check that · TIsc[r] := eval table Articles of the Articles for suncheck to show p(a)= 0 $\sum_{\alpha \in \beta \in H_{\alpha}^{S_{\alpha}}} \hat{C}_{r}(\alpha, \beta) \hat{a}(\alpha) \hat{a}(\beta) = 0$ · output Tisc[r] _ 2. output $\hat{\alpha}: \mathbb{F}^{3} \rightarrow \mathbb{F}$ α $\frac{1}{\sqrt{2}}V_{sc}(F,H_{v,2Sv,0})$ $[LDE A a:lnJ-F]$ $\frac{1}{2}$ 3. run low-degree test on TTG $\sum V_{LDT}(F, S_v, S_v | H_v|)$ 1) If we can only ensure that total dugree of 2 is svilthel than the 12

