Lecture B.7

Poly-size PCP (The low-degree extension PCP)

Tom Gur

Summer Graduate School on Foundations and Frontiers of Probabilistic Proofs August 3, 2021

Last time: Hadamard PCP	NP-complete
	=> for all NP
We showed an exp-length, O(1)-local PCP for RESAT	
The PCP had 2 parts: D Hadamand enc. of sat. assignment	+ a1,,an
$ (I) Hadamard enc. of a \otimes a = (a) $	$(i - \alpha_j)_{i,j}$
$\begin{bmatrix} a_1 \\ \cdots \\ a_n \end{bmatrix} \xrightarrow{Had} \begin{bmatrix} a_1 \\ \cdots \\ Had \\ a_n \end{bmatrix} \xrightarrow{Had} \begin{bmatrix} a_n \\ \cdots \\ a_n \end{bmatrix} \xrightarrow{Had} \begin{bmatrix} a_n \\ \cdots \\ a_n \end{bmatrix} \xrightarrow{Z_2}$	
We used the linear structure of the Hadamard code	
D check all equation at once using random linear	comb.
2 check consistency between linear and quadratic	terms.
3 locally test the Hadamard enc. Using linearing	tg-testing.
@ locally correct the Hadamard enc. Using plural	ly votes.
Can we do it without expending?	

Polynomial-Size PCPs for NP
We have constructed exponential-size PCPs for NP:
$NP \leq PCP [\mathcal{E}_{s} = 0, \mathcal{E}_{s} = 0.5, \sum = \{0, 1\}, l = exp(n), q = O(1), r = poly(n)]$
Our next goal is to reduce proof length to polynomial size:
<u>Heorem</u> : NP S PCP [$\mathcal{E}_{s}=0, \mathcal{E}_{s}=0.5, \Sigma=\{0,1\}, l=\text{poly}(n), q=\text{poly}(logn), r=O(logn)$]
[We will see how to further reduce q to $O(D)$ towards the end of this course.] That is, $\forall L \in NP = P(e)$ system (P_L, V_L) for L that looks like this: $x \rightarrow P_L \rightarrow P_L \rightarrow P_L \rightarrow P_L \rightarrow O(D)$
Proof strategy:
 construct a low-degree PCP for NP + today's lecture construct a low-degree test low-degree PCP + low-degree test -> polynomial-size PCP
· · · · · · · · · · · · · · · · · · ·

The Reed-Muller / low-degree extension code
A function $f: \mathbb{F}^n \to \mathbb{F}$ is a low-degree polynomial if $deg(f) \leq d$
$ALL = \{ f: \mathbb{F}^n \to \mathbb{F} \}$ $LD = \{ f: \mathbb{F}^n \to \mathbb{F} : deg(f) \leq d \}$
The subspace LD constitues the Reed-Muller code. But how do we encode a message $x \in (d+n)^n$ to a codeword $f_x \in LD^2_o$
$\frac{\text{Low-degree extension: }}{\text{Embed xe(d+n)}^{n} \text{ in } H^{n}: f:H^{n} \rightarrow \text{IF s.t. } f(i) = X_{i}}$ $\text{Let } \widehat{f}:H^{n} \rightarrow \text{IF s.t. } \widehat{D} \text{ ind-deg}(f) = d$ $\widehat{II} \widehat{f}(i) = f(i) \forall i \in H^{m}$

Polynomial-Size PCP for Quadratic Equations
Recall the following NP-complete problem about quadratic equations over a field IF:
QESAT(F) = $\{(p_1, \ldots, p_m) \mid \exists a_1, \ldots, a_n \in F = t, \forall i \in [m] p_i(a_1, \ldots, a_n) = o \}$
We will construct a PCP for QESAT (IF):
<u>Heorem</u> : QESAT(IF) $\leq PCP[\mathcal{E}_s=0,\mathcal{E}_s=0.5,\Sigma=IF,l=IF ^{O(\log \log n)},q=poly(logn),r=O(logn)]$
We design the PCP in several steps: $l = poly(n)$ if $ F = poly(logn)$
· use a <u>small</u> amount of randomness to reduce in equations pi,, pm to I equation p, preserving satisfiability whp
· for every possible p, indude a proof that p is satisfied by the low-degree extension of the candidate assignment
· add low-digree testing

Part 1: From m Equations to 1 Equation

 $\frac{|\text{emma:}}{(1)} \text{ there is a probabilistic algorithm T s.t. for ||F|=polylog(m)}$ $(1) T(p_{1,...,p_m}) \text{ uses } O(\log m) \text{ random bits and outputs a quadratic equation } p(X_{1,...,X_n})$ $(2) \text{ if } \exists a \text{ s.t. } p_i(a) = \dots = p_m(a) = 0 \text{ then } \Pr[T(p_{1,...,p_m,i})(a) = 0] = 1$ $(3) \text{ if } p_{1,...,p_m} \text{ are unsatisfiable then } \Pr[\exists a T(p_{1,...,p_m,i})(a) = \delta] \leq \frac{1}{2}.$

Idea #1: T samples jetm] and autputs pj This uses little randomness (login bits) but the soundness error is large $(1 - \frac{1}{m})$. Idea #2: T samples $n_{1,...,n_{m}} \in \mathbb{F}$ and outputs $p = \sum_{j \in \mathbb{Z}_{m}} f_{j} f_{j}$ This has small soundness error $(\frac{1}{1|f|})$ but uses too much randomness (n elts). [This is essentially what we did inside the LPCP for QESAT(F).] If we sample ri, , rim ETFZ the soundess error is ok (1/2) but not randomness (n bits). Idea #3! I samples relf and outputs p= Zjeimj rsp; This uses little randomness (1 eff) but now requires the field to be large: the soundness error is $\frac{M}{||F||}$ so we need $||F|| \ge \int_{C} (m)$

Part 1: From m Equations to 1 Equation

 $\frac{\text{lemma:}}{1 \text{ there is a probabilistic algorithm T s.t. for small-enough IF}$ $(1) T(p_{1,...,p_{M}}) \text{ uses } O(\log_{M}) \text{ random bits and outputs a quadratic equation } p(X_{1,...,X_{M}})$ $(2) \text{ if } \exists a \text{ s.t. } p_{1}(a) = \dots = p_{M}(a) = 0 \text{ then } \Pr[T(p_{1,...,p_{M}};r)(a) = 0] = 1$ $(3) \text{ if } p_{1,...,p_{M}} \text{ and unsatisfield then } \Pr[\exists a T(p_{1,...,p_{M}};r)(a) = \delta] \leq \frac{1}{2}.$

proof:

Identify [m] with He SIF with IHe = O(login) and Se = login logitle The transformation T samples river rise E IF and outputs $p := \sum_{\substack{0 \leq j_1, \dots, j_{S_e} \leq |H_e|}} f_1^{j_1} \dots f_{S_e}^{j_{S_e}} \cdot P_{j_1 \dots j_{S_e}} + H_e^{S_e} + H_e^{S_e}$ $The Soundness error is \leq \frac{S_e \cdot |H_e|}{|F_i|} \leq O\left(\frac{(\log m)^2}{|F_i|}\right) \Rightarrow OK \text{ if } |F_i| = D_b((\log m^2)).$ He He The amound of randomness is: $|F|^{Se} = O((poly logn) \frac{logn}{logO(logn)}) = 2^{O(logn)} = poly(n).$

Part 2: Low-Degree PCP for 1 Equation	
Consider this setting: $P(aeff^n) \rightarrow I \qquad V(peff[X_1,,X_n])$ Is postisfiable? The challenge is that the polynomial $p(X_1,,X_n)$ may depend on every variable.	
Idea: reduce to a suncheck problem & use (unrolled) sunchuck	
Step 1: arithmetize • identify [n] with $H_v^{s_v}$ for a subset $H_v \subseteq IF$ with $ H_v = O(\log n)$ and $s_v := \frac{\log n}{\log H_v }$ • satisfiability as a sum:	
$\forall \alpha: [n] \rightarrow \mathbb{F}$, $p(\alpha) = \sum_{i,j \in [n]} C_{ij} \alpha_i \alpha_j = \sum_{\alpha,\beta \in H^{S_v}} \hat{C}(\alpha,\beta) \cdot \hat{\alpha}(\beta)$	
where $\hat{\alpha}: \mathbb{F}^{s_{v}} \to \mathbb{F} \land \hat{\mathbb{C}}: \mathbb{F}^{2s_{v}} \to \mathbb{F}$ are the low-degree extensions $\hat{\mathcal{F}} = \alpha: [n] \to \mathbb{F} \land \mathbb{C}: [n]^{2} \to \mathbb{F}$. The addered $Q(y_{1,,y_{s_{v}},z_{1,,z_{s_{v}}}):= \hat{\mathbb{C}}(y,z)\hat{\alpha}(y)\hat{\alpha}(z)$ has individual degree $\leq 2\cdot(H_{v} -1) \leq 2 H_{v} $.	
We have reduced the problem to $\sum_{\alpha,\beta\in H_{a}} q(\alpha,\beta) \stackrel{?}{=} 0$ for $\hat{c}(\gamma,z)$ Known by the verifier and \hat{a} supplied by the prover.	

Part 2: Low-Degree PCP for 1 Equation
Step 1:
$$p(a) = 0 \iff \sum_{k \neq p \in H_{k}^{N}} q(a, p) = 0$$
 for $q(y,z) := \hat{c}(y,z) \cdot \hat{a}(y) \cdot \hat{a}(z)$
Step 2: probabilishically clack the arithmetized statement
 $V(p) := check that \sum_{k \neq p \in H_{k}^{N}} q(a, p) = 0$
 $P(p, a)$ outputs $\pi:=(\hat{a}, \pi_{Sc})$
 $V(p) := check that \sum_{k \neq p \in H_{k}^{N}} q(a, p) = 0$
by running sumcheck and querying \hat{a}
 $V(p) := check that \sum_{k \neq p \in H_{k}^{N}} q(a, p) = 0$
 $V(p) := check that \sum_{k \neq p \in H_{k}^{N}} q(a, p) = 0$
by running sumcheck and querying \hat{a}
 $Proof langth:
 $If_{Sc} is seal table for the prover for sumcheck claim for the prover for $\pi_{Sc}(n)$
 $If_{Sc}(1) = poly(n)$
 $If_{Sc}(1) = poly(n)$
 $If_{Sc}(2) = poly(n)$
 $If_{Sc}$$$

.

.

.

.

.

.

.

.

•

•

.

.

.

.

.

.

.

•

.

•

•

.

.

•

.

.

.

•

.

9

Low-Degree PCP for Quadratic Equations We put Part 1 and Part 2 together: $\vee ((\rho_1, \dots, \rho_m)) :=$ $P((p_1,...,p_m), a) :=$ 1. Sample rEFF and compute 1. For every t E F? : $P_r := T(P_1, \dots, P_m/r)$ Tsc[r]) • p= T (p1,...,pm;r) 6 2. run sumcheck to check that • TISC[r] := eval table TETT SP $\sum_{\alpha,\beta\in H_{*}^{S_{*}}} \hat{C}_{r}(\alpha,\beta)\hat{a}(\alpha)\hat{a}(\beta) = 0$ for sunchack to show p(a)=0 · output TIsc[r] 2. output $\hat{a}: \mathbb{F} \xrightarrow{s_v} \mathbb{F}$ â $\int V_{Sc}(\mathbb{F}, \mathbb{H}_{1,2}S_{2,0})$ [LDE of a: [n] -F] Completeness: if $p_i(a) = \dots = p_m(a)$ then $\forall r \in \mathbb{F}^{k}$ $p_r(a) = 0$ and so $\sum_{\alpha, \beta \in H^{k}} \hat{C}_r(\alpha, \beta) \hat{a}(\alpha) \hat{a}(\beta) = 0$ Soundness: if $(p_1, ..., p_m)$ is unsatisfiable then, except w.p. $\leq O\left(\frac{Se|Hel}{|F|}\right) = O\left(\frac{\log^2 m}{|F|}\right)$, so is pr. Hence, $\forall \hat{\alpha}$ that is LDE, $\sum_{\alpha, \beta \in H_{\nu}^{S_{\nu}}} \hat{C}_{r}(\alpha, \beta) \hat{\alpha}(\alpha) \hat{\alpha}(\beta) \neq 0$. So, $\forall \widehat{T}_{S_{\nu}}$, the sumchask accepts w.p. at most $O(\frac{S_{\nu}|H_{\nu}|}{|IF|}) \leq O(\frac{\log^2 n}{|IF|})$. So $|IF| = \Omega(\operatorname{poly}(\log m, \log n))$ suffices.

Recall Low-Degree Testing
there exists a ppt oracle machine V_{LDT} s.t. $\forall f: \mathbb{F} \rightarrow \mathbb{F}$ (D completeness: if f has total degree at most d then $\mathbb{P}[V_{LDT}(\mathbb{F},n,d)=1]=1$
(2) <u>soundness</u> : if f is $\frac{1}{10}$ -for from all functions of total degree at most d then $P_{I}\left[V_{LOT}(\mathbb{F}, n, d)=1\right] \leq \frac{1}{2}$
3 <u>efficiency</u> V _{LDT} (IF, n, d) makes poly (IIFI, n, d) queries Why total degree test?
It is simpler and we can make do with it [see next slide]. Also there is a generic way to "lift" a total degree test to an individual degree test.
<u>Remark</u> : the requirement that if is defined on IF" rather than D" for D=IF comes from the LDT Ethis can be relaxed somewhat but is not larg]

At Last: PCP for Quadratic Equations <u>Heorem</u>: QESAT(IF) $\leq PCP[\mathcal{E}_{s}=0,\mathcal{E}_{s}=0.5,\Sigma=IF, l=IF|^{O(\log \log n)}, q=poly(logn), r=O(logn)]$ $P((p_{1},..,p_{m}),a):=$ $\vee ((\rho_1, \dots, \rho_m)) :=$ 1. Sample re IF so and compute 1. For every + E IF : Tsc[r]) p:=T(p:,...,pm;i) p=T(p1,...,pm;r) 2. run sumched to check that · TISC[r] := eval table for sunchack to show pla)=0 $\sum_{\alpha,\beta\in H_{*}^{s}} \hat{C}_{r}(\alpha,\beta)\hat{\alpha}(\alpha)\hat{\alpha}(\beta) = 0$ · output Tisc[r] 2. output â:F=→F à J Vsc (F,H, 25, 0) [LDE of a: [n] -F] TIA 3. run low-degree test on Ta >> VLDT (F, SV, SV |HV) 1) If we can only ensure that total degree of à is SvIHU/ then the Soundness error of the term $O(\frac{Sv[H_J]}{IFT})$ increases to $O(\frac{Sv^2[H_J]}{IFT})$. That's ok. (2) If The is to -far from LD then V_{LOT} accepts w.p. $\leq Y_2$. If T_{T_A} is to - chose to some \hat{a} , then we don't need self-correction! Vsc's 2 queries are random, so pay 2.to in error.

Digest: Reed—Muller PCP
We showed a poly-length, polylog-local PCP for RESAT.
The PCP was a Reed-Maller enc. of sat. assignment and
$ \overbrace{[\alpha_1]\cdots [\alpha_n]} \longrightarrow \overbrace{[\alpha_1]\cdots [\alpha_n]}^{f \in F[x_1, \ldots, x_s], deg(f) \leq d} $
We used the structure of the Reed-Muller code to:
D Reduce mequations to 2 using pseudo-random linear comb.
Q check an equation using the samcheck protocol.
3 locally test the Reed-Muller ENC. Using low-deg. testing.
what's next?