Lecture B.10

Applications of PCPs

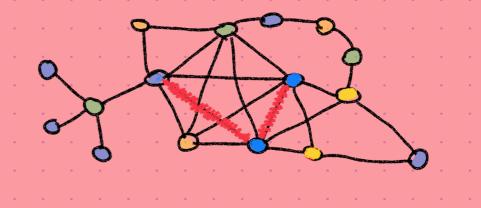
Summer Graduate School on Foundations and Frontiers of Probabilistic Proofs 2021.08.05

Applications of PCPs

Two main directions:

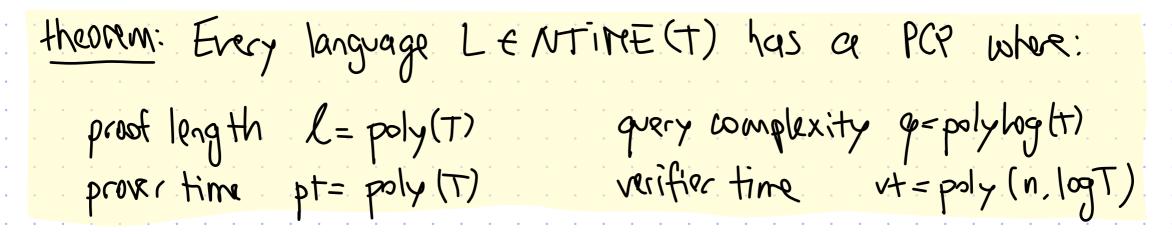
Hardness of approximation

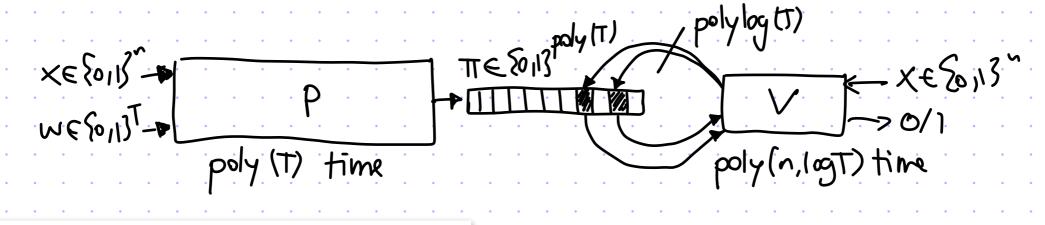
which problems remain hard even if we only require an approximate solution?



Delegation of Computation via PCPs

We showed the following result:





In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with possibly extremely powerful but unreliable software and untested hardware.

But how to use this setup"?

Checking Computations in Polylogarithmic Time

László Babai ¹ Univ. of Chicago ⁶ and Eötvös Univ., Budapest Lance Fortnow²
Dept. Comp. Sci.
Univ. of Chicago⁶

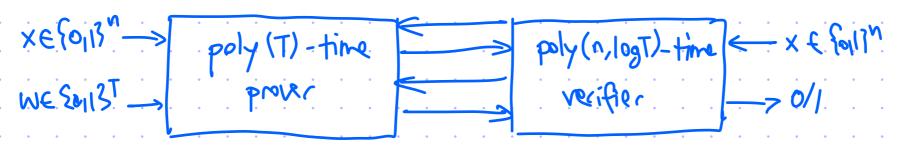
Leonid A. Levin³
Dept. Comp. Sci.
Boston University⁴

Mario Szegedy ⁵ Dept. Comp. Sci. Univ. of Chicago ⁶

A Crypto Interlude: From PCP to Interactive Arguments

theorem [informal]
Suppose L has a PCP with prover time pt, verifier time vt, grery complexity q.
Then by using cryptography we can construct an interactive "proof" for L s.t.
prover time O(pt), verifier time O(vt), communication O(q).

If we apply this to PCPs in prior slide, we get a powerful result:



Proof attempt:

[does NOT contradict limitations of IPs with small communication!]

P(x,w)

Produce PCP string: $\Pi:=P_{RR}(x,w)$ deduce query set Q in $V_{RR}^{\Pi}(x;p)$ The $V_{PCP}(x;p)=1$

Problem: prover can pick TT based on Q.

[Also, where is] He crypto??

A Crypto Interlude: Kilian's Protocol

Idea: commit to PCP string first then locally open locations of it

Dat: A function family $H_{\lambda} = \{h_{\lambda}: \{0,13^2 \rightarrow \{0,13^2\}\} \}$ is collision-resistant if $Y = \{f: cient \ adversary \ A \ P = \{A(h) \ outputs \ x \neq y \ s \neq h(x) = h(y)\} \}$ is negligible in λ .

The new protocol is as follows:

$$P(x, \omega)$$

- · produce PCP string: TT:=PPR(X,W) < h · commit to it: rt=MTh(TT)



- · deduce query set Q in VAR(x;p)
- · produce outh paths for each onus

sample POP randomness p

time (Ppa) + O(l)

time (VPCP) + Ox (9 logl)

Security analysis involves cryptography and so we will not discuss it.

From IOP to Interactive Argument

```
theorem [informal]
Suppose L has a public-coin IOP with prover time pt, verifier time vt, query complexity q.
Then by using cryptography we can construct an interactive argument for L with
```

prover time O(pt), verifier time O(vt), communication O(9).

proof altempt:

This is NOT secure because the prover can answer queries based on 1,-, 1x!

Idea: extend Kilian's protocol from PCP to IDP by committing to each oracle via a Merkle tree and then beally open the relevant locations

From IOP to Interactive Argument

As in Kilian's protocol, we tely on collision-resistant functions to build Merkle trees.

$$\Pi_{k} := |\Gamma_{DP}(X, C_{1}, ..., C_{k-1}), C_{k} := |\Pi_{k}(\Pi_{k})$$

· deduce IDP venfer's queries:

Q:= queries (VIDP (X; [1,..., [k)))

produce outh paths for each assure

ans, paths Viop (x; r,...,rk) = 1 & check paths

Sewrity analysis involves cryptography and so we will not discuss it.

In sum, designing efficient IDPs leads to efficient arguments.

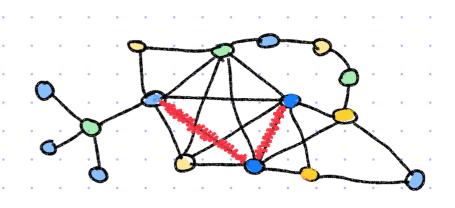
Hardness of approximation

During the 70s and 80s many key optimisation problems were shown to be NP-hard.

E.g., 3SAT, Knapsack, Hamiltonian path, Travelling salesman, 3 COL, Clique, Super Mario...

It's natural to seek approximate solutions D

Defo An algorithm A is an x-approx alg for a maximisation problem T $i f \forall x \qquad \alpha \cdot \Pi(x) \leq A(x) \leq \Pi(x)$



Example: Max-3SAT

Problem: Given a 3CNF formula, find an assignment that maximises the number of satisfied clauses.

$$E_{x}: \Upsilon = (x_{1} \vee x_{2} \vee x_{3}) \wedge (\overline{x_{2}} \vee \overline{x_{3}} \vee x_{4}) \wedge (\overline{x_{1}} \vee \overline{x_{4}} \vee x_{3})$$

$$\wedge (x_{1} \vee \overline{x_{2}} \vee x_{4}) \wedge (\overline{x_{2}} \vee x_{3} \vee \overline{x_{4}})$$

Claim: There exists a 3-approx poly-time algorithm for Max-35AT

The main idea is to observe that there must be many

3-sat assignments, so it saffices to guess some at random D

Example: Max-3SAT

Claim: There exists a 3-approx poly-time algorithm for Max-35AT

Proof! Let <; be the indicator of whether the ith clause is sat.

Note that $E[c_i] = \Pr[c_i \text{ is sat}] = \frac{7}{8}$ and only one assignment that $E[\sum_{i=1}^{\infty} c_i] = \sum_{i=1}^{\infty} E[c_i] = \frac{7}{8}m$. Lisjanction

Hence there exists an assignment satisfying $\frac{7}{8}$ m clauses Moreover, by Markov, at least $\frac{1}{m+1}$ of the assignment satisfy at least $\frac{7}{8}$ m clauses.

Thus it suffices to choose and check O(m) random assignments

How to show hardness of approximation?

Recall that NP-hardness is defined for decision problems.

Definition: Let Π be an approximation problem. Gap $\Pi_{c,s}$ is the problem of deciding whether $\Pi(x) \geq c$ or $\Pi(x) \leq s$.

Claim: If GapTic,s is NP-hard, then it is NP-hard to approximate Π to \leq precision

Proof: We reduce the gap problem to the approx problem.

If $\Pi(x) \geq c$, the approx is at least $\leq c = s$ If $\Pi(x) \leq s$, the approx is at most s.

11

PCP <=> hardness of approximation

Well illustrate the connection via an example.

Theorem: Gap3SAT(1,S) is NP-hard for S<1 iff

3SAT \in PCP_{1,S'} [O(logn), 3] for S'=1. $=\frac{7}{8}$ $+\varepsilon$

we proved this D

Proof: => Apply the reduction from 3SAT to Gop3SAT.

The NP proof corr. to the Gop3SAT instance.

Now sample clauses at random.

C= We reduce 3SAT to Gop3SAT.

Express the PCP verifies checks as a 3CVF. completeness implies 1-satisfiability.

Soundness implies at most s'-satisfiability.

oncluding Words