The goal of this worksheet is to gain familiarity with basic facts about polynomials.

Problem 1. (Restriction to a line) A line in \mathbb{F}^n is a function $g: \mathbb{F} \to \mathbb{F}^n$ of the form $g(z) = (a_1z + b_1, \ldots, a_nz + b_n)$ for some choice of coefficients $a_1, b_1, \ldots, a_n, b_n \in \mathbb{F}$. The restriction of an *n*-variate polynomial $f(x_1, \ldots, x_n)$ over \mathbb{F} to the line g is defined as the univariate polynomial h(z) := f(g(z)). Prove that for every line g, the degree of h is at most the total degree of f.

Next we prove the Schwartz-Zippel Lemma: for every non-zero *n*-variate polynomial f of total degree at most d over a field \mathbb{F} and every finite set S in \mathbb{F} , $\Pr_{a_1,\ldots,a_n \leftarrow S}[f(a_1,\ldots,a_n)=0] \leq \frac{d}{|S|}$. This fundamental lemma is used numerous times in this course.

Problem 2. (Zeroes of univariate polynomials) Let \mathbb{F} be a field and f a non-zero univariate polynomial over \mathbb{F} of degree at most d. Prove that f has at most d roots in \mathbb{F} (you may use without proof the fact that $\mathbb{F}[X]$ is a Euclidean domain). (In particular, for every finite set $S \subseteq \mathbb{F}$, $\Pr_{a \leftarrow S}[f(a) = 0] \leq \frac{d}{|S|}$.) Give an example of a *finite* field \mathbb{F} and polynomial $f \in \mathbb{F}[X]$ that has strictly fewer than deg(f) roots in \mathbb{F} .

Problem 3. (Zeroes of multivariate polynomials) Let \mathbb{F} be a field and f a non-zero n-variate polynomial over \mathbb{F} of degree at most d. Prove that, for every finite set S in \mathbb{F} , f has at most $d|S|^{n-1}$ roots in S^n . (*Hint: rely on the prior problem, and use induction.*) Conclude from this the Schwartz-Zippel Lemma.