Foundations and Frontiers of Probabilistic Proofs (Summer 2021) Worksheet A.2: Sumcheck Protocol Date: 2021.07.28

Problem 1. (Sumcheck with tensor weights) We consider an extension of the sumcheck problem where the summand is multiplied by weights that have a product structure. Specifically, given $n \cdot |H|$ field elements $\{\delta_{i,\alpha} \in \mathbb{F}\}_{i \in [n], \alpha \in H}$, we consider statements of the following form:

$$\sum_{\alpha_1,\dots,\alpha_n\in H} \delta_{1,\alpha_1}\cdots \delta_{n,\alpha_n}\cdot p(\alpha_1,\dots,\alpha_n) = \gamma$$

Show that the sumcheck protocol can be extended to support the above statement, with the same completeness and soundness guarantees.

Problem 2. (Efficient multilinear extension) The multilinear extension of a boolean function $f: \{0,1\}^n \to \{0,1\}$ over a field \mathbb{F} is the unique multilinear polynomial $\text{MLE}_{\mathbb{F}}(f) \in \mathbb{F}[X_1, \ldots, X_n]$ that agrees with f on $\{0,1\}^n$:

$$\mathrm{MLE}_{\mathbb{F}}(f)(X_1,\ldots,X_n) := \sum_{b_1,\ldots,b_n \in \{0,1\}} f(b_1,\ldots,b_n) \prod_{i \in [n]} X_i \prod_{i \in [n]} X_i \prod_{i \in [n]} (1-X_i)$$

Prove that evaluating a multilinear extension at a single point is in linear time. Namely, give an algorithm that given a boolean function f (represented as a string of 2^n bits), finite field \mathbb{F} , and evaluation point $(\alpha_1, \ldots, \alpha_n) \in \mathbb{F}^n$, computes the evaluation of $\text{MLE}_{\mathbb{F}}(f)$ at $(\alpha_1, \ldots, \alpha_n)$ in $O(2^n)$ field operations. Hint: The multilinear extension can be evaluated by summing term by term in $O(n \cdot 2^n)$ field operations while maintaining a state of O(1) field elements in memory. How can you use more memory to speed up the computation?

Problem 3. (Efficient sumcheck) We analyze the running time of the honest prover in the sumcheck protocol, when proving statements of the form $\sum_{\alpha_1,\ldots,\alpha_n\in H} p(\alpha_1,\ldots,\alpha_n) = \gamma$.

- 1. Prove that the honest prover can be realized in $O(d \cdot |H|^n \cdot |p|)$ operations, where d is the individual degree of p and |p| is the number of operations to evaluate p at any point in \mathbb{F}^n .
- 2. Consider the special case where $H = \{0, 1\}$ and p is multilinear. Prove that, if p is specified via its evaluations on $\{0, 1\}^n$, the honest prover can be realized in $O(2^n)$ field operations.