Problem 1. (Layered circuits) Prove that any arithmetic circuit of depth d and size S can be transformed into a *layered* arithmetic circuit of depth d and size $O(S^2)$.

Problem 2. (GKR for any set of gates) The GKR protocol that we saw in class applies to layered arithmetic circuits, which by default involve two gates: addition gates and multiplication gates. Now suppose that we instead consider layered circuits where gates are selected from a gate set of bivariate polynomials $\{g_k(X,Y)\}_k$. (The special case of addition and multiplication thus corresponds to the gate set $\{g_1(X,Y) = X + Y, g_2(X,Y) = X \cdot Y\}$.) How would you modify the GKR protocol to support the evaluation of such circuits?

Problem 3. (GKR for formulas) A formula is a circuit whose underlying directed acyclic graph is a tree (except for the input layer). Let φ be a layered arithmetic formula of depth d with binary + and \times gates, where even layers consist of + gates and odd layers consist of \times gates. In particular, layer $i \in [d]$ contains 2^{i-1} gates, which we label using the set $\{0,1\}^{i-1}$. (Inputs to the circuit are provided in layer d + 1.) For even $i \in [d-1]$, let $\operatorname{add}_i: \{0,1\}^{i-1} \times \{0,1\}^i \to \{0,1\}^i \to \{0,1\}$ denote the wiring predicate corresponding to φ 's gates in layer i; i.e., $\operatorname{add}_i(a, b, c) = 1$ if gate a (in layer i) has the outputs of b, c (in layer i + 1) as its left and right inputs, respectively. Let add_i denote the multilinear extension of add_i . Define similarly mul_i and mul_i for $\operatorname{odd} i \in [d-1]$. Show that there is a way to label the gates in φ such that for every $i \in [d-1]$, add_i or mul_i can be evaluated at any point in \mathbb{F}^3 in O(i) field operations.

Note: it is not possible in general to do this for $\widehat{\operatorname{add}}_d$ (or $\widehat{\operatorname{mul}}_d$) since the wiring between the input layer and the bottom layer of gates can be arbitrary.