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Problem 1. (ZK requires interaction) Prove that if a language L has a non-interactive proof
that is zero-knowledge (even if only against honest verifiers), then L is in BPP. (In a non-interactive
proof, the prover and the verifier receive as input an instance x, the prover sends a message a to the
verifier, and then the verifier decides whether to accept or reject based on the instance x, prover
message a, and its own internal randomness r.)

Problem 2. (HVZK PCPs for NP) Prove that there exist honest-verifier zero-knowledge PCPs
for all of NP by following the steps below.

1. The graph 3-coloring problem (3COL) is defined as follows: given a graph G = ([n], E), decide
if there exists a function ψ : [n]→ [3] such that for every (u, v) ∈ E it holds that ψ(u) 6= ψ(v).
Prove that 3COL is contained in NP. (You do not have to prove that 3COL is also NP-hard.)

2. The view of a PCP verifier is the random variable (x, r, a1, . . . , aq) where x is its input
instance, r is its internal randomness, and (a1, . . . , aq) are the answers to its queries to the
PCP string π, which itself can be sampled probabilistically by the prover on input x. We
denote this view by viewV (V P (x)(x; r)). A PCP system for a language L is (perfect) honest-
verifier zero-knowledge if there exists a polynomial-time probabilistic algorithm S such that,
for every x ∈ L, S(x) outputs a view that is distributed identically to viewV (V P (x)(x; r)).

Design an HVZK PCP for 3COL, with perfect completeness and soundness error 1− 1
poly(n) .

(Hint: how can you randomize the prover’s 3-coloring ψ : [n]→ [3]?)

Discussion question: How would you define a notion of malicious-verfier zero-knowledge that is
appropriate for superpolynomial-size PCPs? What about for polynomial-size PCPs?

Problem 3. (Auxiliary inputs and sequential repetition) An IP is auxiliary-input malicious-
verifier zero-knowledge if for every polynomial-time probabilistic verifier Ṽ there exists a proba-
bilistic algorithm S that runs in expected polynomial time such that for every instance x ∈ L and
auxiliary input z, the random variables S(x, z) and viewṼ (〈P, Ṽ (z)〉(x)) are identical.

Prove that auxiliary-input perfect zero knowledge is preserved under sequential repetition. (See
Worksheet A.1 for a definition of sequential repetition of IPs.)

(Hint: Let X1, . . . , Xk and Y1, . . . , Yk be 2k distributions. In order to show that (X1, . . . , Xk) ≡
(Y1, . . . , Yk) it suffices to show that for every i ∈ {0, . . . , k},

(X1, . . . , Xi, Yi+1, . . . , Yk) ≡ (X1, . . . , Xi+1, Yi+2, . . . , Yk) .

This proof technique is known as a hybrid argument.)

Problem 4. (HVZK and parallel repetition) Let (Pt, Vt) be the t-wise parallel repetition of
(P, V ): the new prover Pt and the new verifier Vt respectively simulate the old prover P and old
verifier V for t times in parallel, each time with fresh randomness; Vt accepts if and only if V



accepts in all t repetitions. In particular, each prover and verifier message in (Pt, Vt) is a t-tuple of
messages corresponding to the t repetitions.

Prove that honest-verifier perfect zero knowledge is preserved under parallel repetition of in-
teractive proofs. (An interactive proof for a language L is honest-verifier perfect zero-knowledge
if there exists a polynomial-time probabilistic algorithm S such that, for every x ∈ L, S(x) is
identically distributed as the view of the honest verifier after interacting with the honest prover on
common input x.)


