Problem 1. (ZK requires interaction) Prove that if a language \mathcal{L} has a non-interactive proof that is *zero-knowledge* (even if only against honest verifiers), then \mathcal{L} is in BPP. (In a non-interactive proof, the prover and the verifier receive as input an instance \mathfrak{x} , the prover sends a message a to the verifier, and then the verifier decides whether to accept or reject based on the instance \mathfrak{x} , prover message a, and its own internal randomness r.)

Problem 2. (HVZK PCPs for NP) Prove that there exist honest-verifier zero-knowledge PCPs for all of NP by following the steps below.

- 1. The graph 3-coloring problem (3COL) is defined as follows: given a graph G = ([n], E), decide if there exists a function $\psi \colon [n] \to [3]$ such that for every $(u, v) \in E$ it holds that $\psi(u) \neq \psi(v)$. Prove that 3COL is contained in NP. (You do not have to prove that 3COL is also NP-hard.)
- 2. The view of a PCP verifier is the random variable (x, r, a_1, \ldots, a_q) where x is its input instance, r is its internal randomness, and (a_1, \ldots, a_q) are the answers to its queries to the PCP string π , which itself can be sampled probabilistically by the prover on input x. We denote this view by view_V($V^{P(x)}(x;r)$). A PCP system for a language \mathcal{L} is (perfect) honestverifier zero-knowledge if there exists a polynomial-time probabilistic algorithm S such that, for every $x \in \mathcal{L}$, S(x) outputs a view that is distributed identically to view_V($V^{P(x)}(x;r)$).

Design an HVZK PCP for 3COL, with perfect completeness and soundness error $1 - \frac{1}{\mathsf{poly}(n)}$.

(*Hint: how can you randomize the prover's 3-coloring* $\psi \colon [n] \to [3]$?)

Discussion question: How would you define a notion of *malicious-verfier* zero-knowledge that is appropriate for superpolynomial-size PCPs? What about for polynomial-size PCPs?

Problem 3. (Auxiliary inputs and sequential repetition) An IP is *auxiliary-input* maliciousverifier zero-knowledge if for every polynomial-time probabilistic verifier \tilde{V} there exists a probabilistic algorithm S that runs in expected polynomial time such that for every instance $\mathbf{x} \in \mathcal{L}$ and **auxiliary input** z, the random variables $S(\mathbf{x}, z)$ and $\operatorname{view}_{\tilde{V}}(\langle P, \tilde{V}(z) \rangle(\mathbf{x}))$ are identical.

Prove that auxiliary-input perfect zero knowledge is preserved under sequential repetition. (See Worksheet A.1 for a definition of sequential repetition of IPs.)

(*Hint:* Let X_1, \ldots, X_k and Y_1, \ldots, Y_k be 2k distributions. In order to show that $(X_1, \ldots, X_k) \equiv (Y_1, \ldots, Y_k)$ it suffices to show that for every $i \in \{0, \ldots, k\}$,

$$(X_1, \ldots, X_i, Y_{i+1}, \ldots, Y_k) \equiv (X_1, \ldots, X_{i+1}, Y_{i+2}, \ldots, Y_k)$$
.

This proof technique is known as a hybrid argument.)

Problem 4. (HVZK and parallel repetition) Let (P_t, V_t) be the *t*-wise parallel repetition of (P, V): the new prover P_t and the new verifier V_t respectively simulate the old prover P and old verifier V for t times in parallel, each time with fresh randomness; V_t accepts if and only if V

accepts in all t repetitions. In particular, each prover and verifier message in (P_t, V_t) is a t-tuple of messages corresponding to the t repetitions.

Prove that *honest-verifier* perfect zero knowledge is preserved under parallel repetition of interactive proofs. (An interactive proof for a language \mathcal{L} is *honest-verifier* perfect zero-knowledge if there exists a polynomial-time probabilistic algorithm S such that, for every $\mathbf{x} \in \mathcal{L}$, $S(\mathbf{x})$ is identically distributed as the view of the honest verifier after interacting with the honest prover on common input \mathbf{x} .)