A PCP is (malicious-verifier) zero knowledge if there exists a polynomial-time simulator S such that, for every instance $x \in \mathcal{L}$ and polynomial-time malicious verifier \tilde{V} , $S(x)$ outputs a view that is distributed identically to view $\tilde{V}(V^{P(\mathbf{x})})$. In this worksheet we consider a generalization of PCPs called interactive PCPs (IPCPs), where the prover supplies a PCP oracle (potentially of superpolynomial size) and then conducts a standard interactive proof (with polynomial-size messages). The view of a verifier in an IPCP consists of its randomness, the answers to its queries to the PCP, the prover messages it receives during the IP.

Problem. (Zero-knowledge sumcheck) We prove that $\#\text{SAT} \in \text{PZKIPCP}$, that is, $\#\text{SAT}$ has an IPCP with perfect zero knowledge against polynomial-time malicious verifiers.

We provide the IPCP simulator with access to an oracle $\mathcal{Q}_{d,n}$ that samples partial sums of a random low-degree multivariate polynomial. $\mathcal{Q}_{d,n}$ takes as input a list $(q_1, \alpha_1, \ldots, q_t, \alpha_t, q^*)$ where $q_i \in \mathbb{F}^{j_i}$ for $j_i \leq n$, $\alpha_i \in \mathbb{F}$ and $q^* \in \mathbb{F}^{j^*}$ for $j^* \leq n$, and outputs a field element $\beta \in \mathbb{F}$ with the following distribution:

$$
\Pr[\beta \leftarrow \mathcal{Q}_{d,n}(q_1, \alpha_1, \dots, q_t, \alpha_t, q^*)] = \Pr_{Q \leftarrow \mathbb{F}^{\leq d}[X_1, \dots, X_n]}[Q(q^*) = \beta \mid \forall i \in [t], Q(q_i) = \alpha_i]
$$

where $\mathbb{F}^{\leq d}[X_1,\ldots,X_n]$ is the set of *n*-variate polynomials of individual degree at most $d; \mathcal{Q}$ outputs ⊥ if the above conditional probability is undefined. Above $Q(q)$ is defined for $q \in \mathbb{F}^j$ with $j < n$ by "summing out" the remaining indices over $\{0, 1\}$, i.e.

$$
Q(q) := \sum_{b_{j+1},...,b_n \in \{0,1\}} Q(q, b_{j+1},..., b_n) \enspace .
$$

In particular, $Q(\perp) \coloneqq \sum_{b_1,\dots,b_n \in \{0,1\}} Q(b_1,\dots,b_n)$.

(The oracle Q can in fact be efficiently implemented, but we do not discuss this technique here.)

The prover and verifier receive as input a boolean k-CNF formula φ with n variables and m clauses, and a claimed number of satisfying assigments a. They agree on a field $\mathbb F$ whose size is a prime larger than 2^n , and also each compute the arithmetization $\hat{\varphi}$ of φ , which has individual degree $d = \text{poly}(n, m)$. They then interest as follows: degree $d = \text{poly}(n, m)$. They then interact as follows:

- 1. The prover samples $R \in \mathbb{F}^{\leq d}[X_1,\ldots,X_n]$ uniformly at random and sends it to the verifier, along with the value $z := \sum_{b_1,...,b_n \in \{0,1\}} R(b_1,...,b_n)$.
- 2. The verifier sends uniformly random $\rho \in \mathbb{F}$ to the prover.
- 3. The prover and the verifier engage in the standard sumcheck protocol with respect to the polynomial $\rho \hat{\varphi} + R$ and claimed sum $\rho a + z$. (Here the verifier makes a single query to R.)
- 4. The verifier checks that R is δ -close to low-degree (e.g. using a line-vs-point test).

1. Show that this protocol is complete and sound.

2. Show that this protocol achieves perfect zero knowledge.

(Hint 1: the simulator can be "straightline", i.e., does not rewind the malicious verifier.) (Hint 2: first consider the case where the malicious verifier does not query R before sending ρ .)