A PCP is (malicious-verifier) zero knowledge if there exists a polynomial-time simulator S such that, for every instance $\mathbf{x} \in \mathcal{L}$ and polynomial-time malicious verifier \tilde{V} , $S(\mathbf{x})$ outputs a view that is distributed identically to view $_{\tilde{V}}(\tilde{V}^{P(\mathbf{x})})$. In this worksheet we consider a generalization of PCPs called *interactive PCPs* (IPCPs), where the prover supplies a PCP oracle (potentially of superpolynomial size) and then conducts a standard interactive proof (with polynomial-size messages). The view of a verifier in an IPCP consists of its randomness, the answers to its queries to the PCP, the prover messages it receives during the IP.

Problem. (Zero-knowledge sumcheck) We prove that $\#SAT \in \mathsf{PZKIPCP}$, that is, #SAT has an IPCP with perfect zero knowledge against polynomial-time malicious verifiers.

We provide the IPCP simulator with access to an oracle $\mathcal{Q}_{d,n}$ that samples partial sums of a random low-degree multivariate polynomial. $\mathcal{Q}_{d,n}$ takes as input a list $(q_1, \alpha_1, \ldots, q_t, \alpha_t, q^*)$ where $q_i \in \mathbb{F}^{j_i}$ for $j_i \leq n, \alpha_i \in \mathbb{F}$ and $q^* \in \mathbb{F}^{j^*}$ for $j^* \leq n$, and outputs a field element $\beta \in \mathbb{F}$ with the following distribution:

$$\Pr[\beta \leftarrow \mathcal{Q}_{d,n}(q_1, \alpha_1, \dots, q_t, \alpha_t, q^*)] = \Pr_{Q \leftarrow \mathbb{F}^{\leq d}[X_1, \dots, X_n]}[Q(q^*) = \beta \mid \forall i \in [t], \ Q(q_i) = \alpha_i]$$

where $\mathbb{F}^{\leq d}[X_1, \ldots, X_n]$ is the set of *n*-variate polynomials of individual degree at most d; \mathcal{Q} outputs \perp if the above conditional probability is undefined. Above Q(q) is defined for $q \in \mathbb{F}^j$ with j < n by "summing out" the remaining indices over $\{0, 1\}$, i.e.

$$Q(q) \coloneqq \sum_{b_{j+1},\dots,b_n \in \{0,1\}} Q(q, b_{j+1},\dots,b_n)$$
.

In particular, $Q(\perp) \coloneqq \sum_{b_1,\dots,b_n \in \{0,1\}} Q(b_1,\dots,b_n).$

(The oracle \mathcal{Q} can in fact be efficiently implemented, but we do not discuss this technique here.)

The prover and verifier receive as input a boolean k-CNF formula φ with n variables and m clauses, and a claimed number of satisfying assignments a. They agree on a field \mathbb{F} whose size is a prime larger than 2^n , and also each compute the arithmetization $\widehat{\varphi}$ of φ , which has individual degree $d = \mathsf{poly}(n, m)$. They then interact as follows:

- 1. The prover samples $R \in \mathbb{F}^{\leq d}[X_1, \ldots, X_n]$ uniformly at random and sends it to the verifier, along with the value $z \coloneqq \sum_{b_1, \ldots, b_n \in \{0,1\}} R(b_1, \ldots, b_n)$.
- 2. The verifier sends uniformly random $\rho \in \mathbb{F}$ to the prover.
- 3. The prover and the verifier engage in the standard sumcheck protocol with respect to the polynomial $\rho \hat{\varphi} + R$ and claimed sum $\rho a + z$. (Here the verifier makes a single query to R.)
- 4. The verifier checks that R is δ -close to low-degree (e.g. using a line-vs-point test).

1. Show that this protocol is complete and sound.

2. Show that this protocol achieves perfect zero knowledge.

(Hint 1: the simulator can be "straightline", i.e., does not rewind the malicious verifier.) (Hint 2: first consider the case where the malicious verifier does not query R before sending ρ .)