Foundations and Frontiers of Probabilistic Proofs (Summer 2021) Worksheet A.8: Linear-Size IOPs for Circuits Date: 2021.08.05

Problem. (Univariate sumcheck for additive subgroups) We saw how to design a sumcheck protocol for univariate polynomials $g \in \mathbb{F}[X]$ when summing over *multiplicative* subgroups H of F with $deg(g) < |H|$, using the identity

$$
\sum_{a \in H} g(a) = |H|g(0) .
$$

In this problem we will design a univariate sumcheck protocol over *additive* subgroups H.

Problem 1. Using the fact that for every univariate polynomial $g \in \mathbb{F}[X]$ with deg(g) < |H|, letting β be the coefficient of $X^{|H|-1}$ in g, it holds that

$$
\sum_{a \in H} g(a) = \beta \cdot \sum_{a \in H} a^{|H|-1}
$$

,

design an efficient univariate sumcheck protocol for additive subgroups. Let $v_H(X)$ be the vanishing polynomial for H. You may assume that $\sum_{a\in H} a^{|H|-1}$, and $v_H(\gamma)$ for any $\gamma \in \mathbb{F}$, can be computed in time $\mathsf{polylog}(|H|)$.

Problem 2. In this question we will prove the identity used above. Let \mathbb{F} be a field of characteristic p (the prime field \mathbb{F}_p is a subfield of \mathbb{F}). The *derivative* of a function $f: \mathbb{F} \to \mathbb{F}$ in direction $a \in \mathbb{F}$ is $\Delta_a(f)(x) := \sum_{b \in \mathbb{F}_p} f(x + ba)$. For $a_1, \ldots, a_k \in \mathbb{F}$ we inductively define $\Delta_{a_1, \ldots, a_k}(f) :=$ $\Delta_{a_1}(\Delta_{a_2,...,a_k}(f)).$

- 1. Let $a_1, \ldots, a_k \in \mathbb{F}$ be a basis for H over \mathbb{F}_p . Prove that $\Delta_{a_1, \ldots, a_k}(f)(a_0) = \sum_{a \in H} f(a_0 + a)$.
- 2. Write the p-ary expansion of an integer $c \in \mathbb{N}$ as $\sum_{i\geq 0} c_i p^i$ for $0 \leq c_i < p$. Define the sum of the "p-ary digits" of c as $ds_p(c) \coloneqq \sum_{i \geq 0} c_i$. For a polynomial $g(X) = \sum_{j \geq 0} \alpha_j X^j$, define $ds_p(g) := \max(\{ds_p(j) : \alpha_j \neq 0\} \cup \{-1\}).$ Prove that for every $a \in \mathbb{F}$ it holds that

$$
\mathsf{ds}_p(\Delta_a(g)) \le \max\{\mathsf{ds}_p(g) - (p-1), -1\} .
$$

You may use the following facts:

- (a) $b^p = b$ for all $b \in \mathbb{F}_p$.
- (b) For $c, d \in \mathbb{N}$, let $c = \sum_i c_i p^i$ and $d = \sum_i d_i p^i$ be their p-ary expansions. If there exists $i \geq 0$ such that $d_i > c_i$ then $\binom{c_i}{d_i}$ $\binom{c}{d} \equiv 0 \pmod{p}.$

Hint: consider a single monomial X^c , and apply the binomial theorem.

3. Prove that for every univariate polynomial $g \in \mathbb{F}[X]$ with $deg(g) < |H|$, letting β be the coefficient of $X^{|H|-1}$ in g, it holds that

$$
\sum_{a \in H} g(a) = \beta \cdot \sum_{a \in H} a^{|H|-1}
$$

.

Problem 3. (Bonus) Show that $\sum_{a \in H} a^{|H|-1} = \prod_{a \in H \setminus \{0\}} a$ $\sum_{a \in H} a^{|H|-1} = \prod_{a \in H \setminus \{0\}} a$ $\sum_{a \in H} a^{|H|-1} = \prod_{a \in H \setminus \{0\}} a$. (*Hint: use Newton's identities.*¹) The right-hand side is equal to the coefficient of the linear term of $v_H(X)$, which can be computed in time $O(\log^2|H|)$.

 1 [https://en.wikipedia.org/wiki/Newton's_identities](https://en.wikipedia.org/wiki/Newton)