Recall that a language \mathcal{L} has a PCP with perfect completeness, alphabet Σ , proof length I and soundness error ϵ if there exists an algorithm V (the *verifier*) satisfying the following conditions.

- Completeness: If $x \in \mathcal{L}$, then there exists $\pi \in \Sigma^{\mathsf{I}}$ such that $\Pr[V^{\pi}(x) = 1] = 1$;
- Soundness: If $x \notin \mathcal{L}$, then for every $\tilde{\pi} \in \Sigma^{!}$, $\Pr[V^{\tilde{\pi}}(x) = 1] \leq \epsilon$.

The query complexity \mathbf{q} is the maximum number of queries made by V to its proof string, while the randomness complexity \mathbf{r} is the number of coin tosses performed by the verifier.

Below \mathcal{L} is a language that has a PCP with the aforementioned parameters.

Problem 1. (From many to 2 queries) Prove that \mathcal{L} has a PCP with perfect completeness, soundness error $1 - \frac{1-\epsilon}{q}$, alphabet Σ^{q} , proof length $l + 2^{r}$, and query complexity 2. (In other words, one can always reduce query complexity to 2, incurring a loss in soundness error and alphabet size.)

Problem 2. (Lower bound on soundness error) Suppose that there exists $\mathbf{x} \notin \mathcal{L}$ such that for every choice of verifier randomness $\rho \in \{0,1\}^r$ there exists a proof $\pi \in \Sigma^l$ such that $V^{\pi}(\mathbf{x};\rho) = 1$. Prove that $\epsilon \geq 2^{-q \log |\Sigma|}$.

Problem 3. (More on lower bounds) The Exponential Time Hypothesis (ETH) states that 3SAT cannot be decided by any deterministic algorithm running in time $2^{o(n)}$. Prove that, assuming ETH, if $\mathcal{L} = 3$ SAT and $\mathbf{r} + \mathbf{q} \log |\Sigma| = o(n)$, then $\epsilon \geq 2^{-\mathbf{q} \log |\Sigma|}$. (Hint: prove that ETH implies the assumption to the prior problem.)