Problem 1. (Radix-3 FFT) We analyze a slight variation of the well-known Fast Fourier Transform algorithm (which in turn inspires the FRI protocol). Recall that in the Discrete Fourier Transform problem we receive $x_0, \ldots, x_{n-1} \in \mathbb{F}$ and must compute $\widehat{x}_0, \ldots, \widehat{x}_{n-1} \in \mathbb{F}$, where $\widehat{x}_j := \sum_{i=1}^{n-1} \widehat{x}_i \widehat{u}_i$, x_0 and y_0 concretes a size x multiplicative subgroup of \mathbb{F}^* . (I $\sum_{\ell=0}^{n-1} \omega^{j\ell} \cdot x_{\ell}$ and ω generates a size-n multiplicative subgroup of \mathbb{F}^* . (It is not necessary that \mathbb{F} be finite; indeed, taking $\mathbb{F} = \mathbb{C}$ and $\omega = e^{-2\pi i/n}$ is not only valid but also useful in practice.)

We focus on the case where $n = 3^k$.

- 1. Show that we rearrange each \hat{x}_j as $\alpha_j + \omega \cdot \beta_j + \omega^2 \cdot \gamma_j$ where $\alpha_j = \alpha_j(\omega^3), \beta_j = \beta_j(\omega^3), \gamma_j = \alpha_j(\omega^3)$ are (applying of) polynomials on ω^3 $\gamma_j(\omega^3)$ are (evaluations of) polynomials on ω^3 .
- 2. Show that $\{\alpha_j, \beta_j, \gamma_j\}_{j\in[n]}$ can be computed by Discrete Fourier Transforms of vectors of size $n/3$.
- 3. Conclude that this yields a recursive algorithm for the DFT problem; give its time complexity (in terms of field operations) and its recursion depth. Why is it useful to have radix- r FFTs for r other than 2?

Problem 2. (Attack on FRI) In this problem we will consider generic attacks on FRI. Let F be an arbitrary field with some power-of-two multiplicative subgroup L. Let $d \in \mathbb{N}$ a power of 2, $\delta < \frac{1}{2}(1 - d/|L|).$

- 1. Give a function $f: L \to \mathbb{F}$ that is δ -far from $RS[\mathbb{F}, L, d]$ and a strategy which convinces the verifier to accept f with probability at least max $\{1/|\mathbb{F}|,(1-\delta)^t\}$ (recall that t is the number of consistency checks performed by the verifier). Hint: consider a function that is zero on a large fraction of its domain and linear on the rest.
- 2. As above, but convince the verifier with probability at least max $\{1-(1-1/\Vert\mathbb{F}\Vert)^{\log d}, (1-\delta)^t\}.$ *Hint:* consider the polynomial $p_d(X) = \sum_{i=0}^{d-1} \beta^i X^i$, for some $\beta \in \mathbb{F}$.
- 3. Mini open problem: Can you do better?

Problem 3. (Simplification of FRI) Consider a modification to the FRI protocol where, instead of performing consistency checks at the end, the verifier performs consistency checks in every round. More precisely, when the verifier sends the *i*-th field element α_i and the prover replies with a function $f_i: L^{2^i} \to \mathbb{F}$, the verifier samples $O(\log d)$ uniformly random points $\mu \in L^{2^{i-1}}$ for each such point and checks that $f_i(\mu^2) = \frac{f_{i-1}(\mu) + f_{i-1}(-\mu)}{2} + \alpha_i \cdot \frac{f_{i-1}(\mu) - f_{i-1}(-\mu)}{2\mu}$ $\frac{-f_{i-1}(-\mu)}{2\mu}$, rejecting immediately if any check fails.

- 1. What is the query complexity of this protocol? (How does it compare to the FRI protocol?)
- 2. Argue that this protocol has perfect completeness: if $f_0: L \to \mathbb{F}$ is in the Reed–Solomon code $RS[F, L, d]$ and the prover is honest, then the verifier always accepts.
- 3. Argue that this protocol is sound: for every constant $\delta > 0$ there exists a constant $\varepsilon > 0$ such that, if $f_0: L \to \mathbb{F}$ is δ -far from the Reed–Solomon code RS[F, L, d], then the verifier accepts with probability at most ε . In the proof of the soundness, you can use the following fact (that you will see in the next lecture): if f is at a sufficiently small distance δ from RS[F, L, d], then, with probability $(1 - \frac{L}{\mathbb{F}})$ over α , $\text{Fold}(f, \alpha)$ is at distance δ from RS[$\mathbb{F}, L^2, d/2$].