Problem 1. (Polynomial consistency test) Let $f_1, f_2, g: \mathbb{F}^n \to \mathbb{F}$ be polynomials of individual degree at most d. Let $S_1, S_2 \subseteq \mathbb{F}^n$ and $H \subseteq \mathbb{F}$ be such that $S_1 \cup S_2 = H^n$. Design a PCP system for proving that for every $i \in \{1, 2\}$ and $a \in S_i$ it holds that $g(a) = f_i(a)$, when the PCP verifier is given oracle access to f_1, f_2, g . (*Hint: reduce the problem to a zero-on-subcube problem. The reduction need not be time-efficient, i.e., it may perform* $poly(|H|^n, d)$ field oprations.)

Below we develop an alternative approach to a zero-on-subcube test to the one described in class. Rather than using sumcheck, we build on properties of multi-variate polynomials.

Problem 2. (Characterization of vanishing on subcube) Let \mathbb{F} be a finite field, H a subset of \mathbb{F} , and $V_H(X) := \prod_{a \in H} (X - a)$ be the vanishing polynomial of H. Prove that a polynomial $f \in \mathbb{F}[X_1, \ldots, X_n]$ vanishes everywhere on H^n if and only if there exist polynomials $Q_1, \ldots, Q_n \in$ $\mathbb{F}[X_1, \ldots, X_n]$ of individual degree less than that of f satisfying

$$f(X_1,\ldots,X_n) \equiv \sum_{i \in [n]} Q_i(X_1,\ldots,X_n) V_H(X_i) .$$

(*Hint:* Any polynomial f(X) can be written as $Q(X) \cdot V_H(X) + R(X)$, where R has degree less than |H|. Apply this fact to the monomials of f.)

Problem 3. (Alternative zero-on-subcube test) Use the fact in the prior problem to design a zero-on-subcube test proving that f vanishes everywhere on H^n with constant soundness and poly(|H|, n) verifier runtime.