Foundations and Frontiers of Probabilistic Proofs (Summer 2021) Worksheet B.9: Proof Composition Date: 2021.08.06

Problem 1. (PCPs of knowledge) A PCP system (P, V) for a relation \mathcal{R} has knowledge error ϵ if there exists a polynomial-time algorithm E such that for every instance \mathfrak{x} and PCP string $\tilde{\pi}$ if $\Pr[V^{\tilde{\pi}}(\mathfrak{x}) = 1] > \epsilon$ then $(\mathfrak{x}, E(\mathfrak{x}, \tilde{\pi})) \in \mathcal{R}$. Show how to construct a PCP system for boolean circuit satisfiability with knowledge error ϵ from these ingredients: (a) a PCPP system for boolean circuit satisfiability with soundness error ϵ and proximity parameter δ ; (b) an error-correcting code with efficient-decoding radius $\delta' \geq \delta$.

Problem 2. (Robustification) Let \mathcal{L} be a language with a PCP with soundness error ϵ , alphabet Σ , proof length I, query complexity q, and randomness complexity r. Using an efficiently-decodable error-correcting code with constant rate and relative distance δ , prove that \mathcal{L} has a robust PCP with robustness parameter $O(\delta/q)$, soundness error ϵ , alphabet $\{0, 1\}$, proof length $O(I \cdot \log |\Sigma|)$, query complexity $O(\mathbf{q} \cdot \log |\Sigma|)$, and randomness complexity r.

Problem 3. (PCPPs for multi-input circuits) A PCPP system (P, V) for the satisfiability of a 2-input boolean circuit $C: \{0, 1\}^{n_1} \times \{0, 1\}^{n_2} \to \{0, 1\}$ has proximity parameter δ and soundness error ϵ if the usual PCPP soundness is replaced by the following one: for every two inputs $(\mathfrak{x}_1, \mathfrak{x}_2)$ and PCPP string $\tilde{\pi}$, if for every two inputs $(\mathfrak{y}_1, \mathfrak{y}_2)$ such that $C(\mathfrak{y}_1, \mathfrak{y}_2) = 1$ there exists $i \in [2]$ such that \mathfrak{x}_i is δ -far from \mathfrak{y}_i then $\Pr[V^{\mathfrak{x}_1,\mathfrak{x}_2,\tilde{\pi}}(C) = 1] \leq \epsilon$. Use (standard) PCPPs for circuit satisfiability with soundness error O(1) and proximity parameter O(1) to construct PCPPs for 2-input circuit satisfiability with soundness error O(1) and proximity parameter O(1). You may assume that n_2 divides n_1 . (*Hint: For a string* \mathfrak{x} , let \mathfrak{x}^t be the t-wise repetition of \mathfrak{x} . Observe that if $\Delta(\mathfrak{x}, \mathfrak{y}) = m$.)