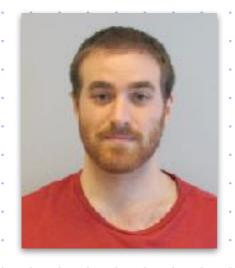

Foundations & Frontiers of Probabilistic Proofs

Summer 2021

Course Staff

Instructors



Alessandro Chiesa

Tom Gur

Teaching Assistants

Gal Arnon

Inbal Livni Navon

Marcel Dall'Agnol

Nick Spooner

Organization

This school consists of 10 days over two weeks (twice Monday to Friday).

We teach 2 courses: A and B (course plan in a few slides).

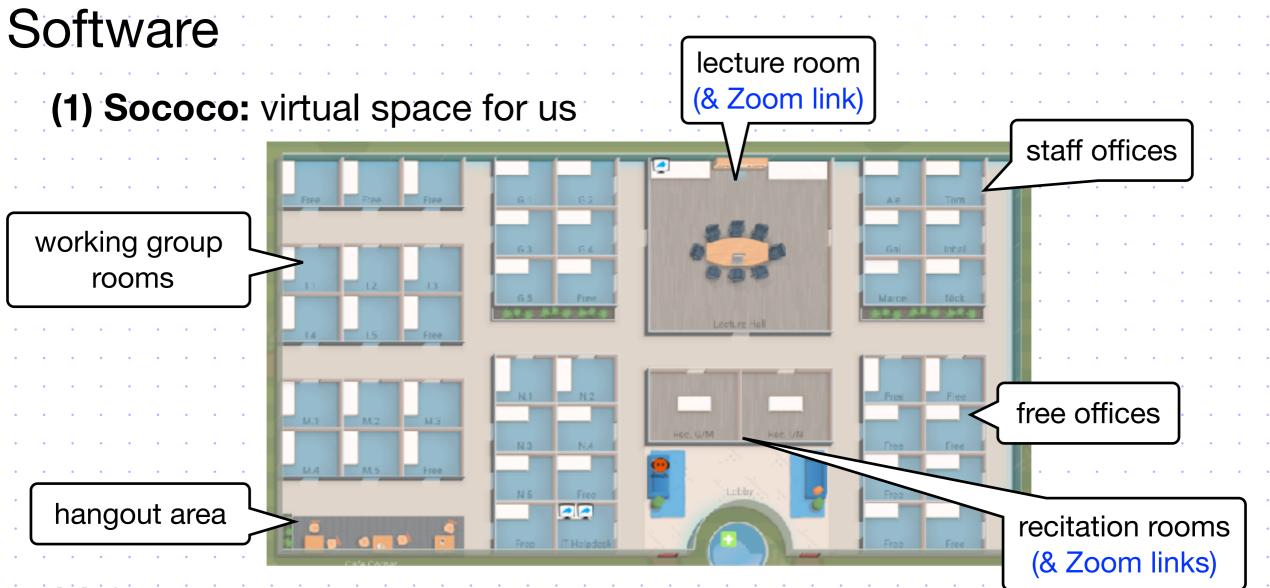
Every day consists of:

- 1.5h lecture + 1h recitation for Course A
- 1.5h lecture + 1h recitation for Course B

Lectures: live on Zoom and then available as recording

Recitations: live on Zoom but not recorded

You have been assigned to a recitation group (one of G, I, M, N). You must attend the assigned recitations for that grou[.


Office hours: 2x per day to serve different time zones

come to mingle in today's (first) office hour!

Working groups: collaboration on worksheet during recitation (and offline)

You have been assigned to a working group of 3-4 people. You must collaborate within this group during recitations.

This summer school is in its first edition --- feedback is welcome!

(2) Slack: all course communication

#ffpp-2021-general → main channel (daily schedule, roster, materials are pinned there)

#ffpp-2021-background → background material (references are pinned there)

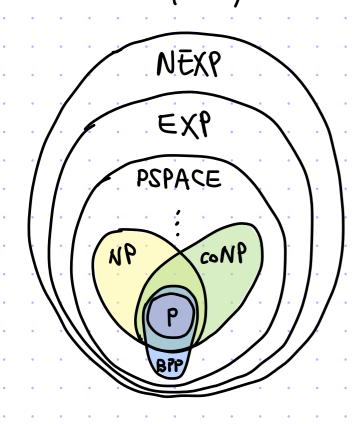
#ffpp-2021-lecture → lecture discussion/questions

#ffpp-2021-recitation-{g,i,m,n} → recitation discussion/questions split by group

#ffpp-2021-social → social channel

Private questions: DM on Slack your TA or the instructors

Working groups: please create your own private Slack channels to collaborate


Course Plan

Day	Course A (Ale)	Course B (Tom)
01	Introduction to IPs	Introduction to PCPs
02	Sumcheck Protocol	Linearity Testing
03	IP for PSPACE	Low-Degree Testing
04	Doubly-Efficient IPs	FRI Protocol (1/2)
05	Zero-Knowledge IPs	FRI Protocol (2/2)
06	Limitations of IPs	Exp-Size PCPs
07	Intro to IOPs	Poly-Size PCPs
08	Linear-Size IOPs for Circuits	PCPs with Sublinear Verification
09	Linear-Size IOPs for Machines	Proof Composition
10	Limitations of IOPs	Applications of PCPs
10	Limitations of IOPs	Applications of PCPs

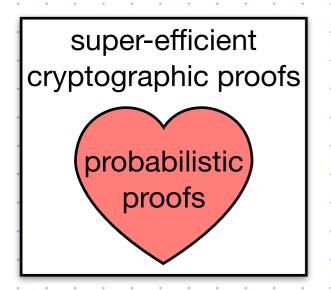
Background

- · finite fields (Fg for prime q)
- · basics of linear codes (rate, distance,...)
- · univariate polynomials (IF[X]) and multivaciate polynomials (IF[XI,...,Xn])
- · basic complexity theory
 - machines, circuits, teductions
 - Cook-Levin theorem
 - basic complexity classes

Goals

- · understand different models of probabilistic proofs (interactive proofs, probabilistically checkable proofs, interactive oracle proofs)
- · understand their power
 - check "hard" problems beyond BPP
 - exponential savings in communication or time
 - zero knowledge
- · design & analyze probabilistic proofs

Why Care?


- **philosophy** meaningful re-envisioning(s) of the classical notion of a mathematical proof (which did not change for 2000 years)
- theory invaluable perspective and set of tools to solve problems

privacy & scalability in cryptography

hardness of approximation (PCP Theorem & co.)

power of entanglement (MIP*=RE)

security

powerful tool in distributed systems

- 1. privacy-preserving digital currencies
- 2. scalability tool in blockchains ("roll-ups")
- N. P2P games!

Let's get started!