DEPARTMENT OF MATHEMATICAL SCIENCES

Faculty of Science

Lecture 6. Part |l. Linear Elimination

Elisenda Feliu
Department of Mathematical Sciences

University of Copenhagen

MPI Leipzig, June 2023
Slide 1/12




UNIVERSITY OF COPENHAGEN DEPARTMENT OF MATHEMATICAL SCIENCES

A hybrid histidine kinase

We consider a histidine kinase HK that can be phosphorylated at two sites, and which
transfers the phosphate group to an additional protein Htp that has one phosphorylation
site.

We have 6 species:

Xi = HKoo, X2 =HK,0, Xs=HKp,, X4=HKpp

Xs = Htp, X5 = Htpp

The reactions of the network are:

HKoo — HKpo — HKop —» HK,p X1 =5 Xo =2 Xz =5 X,
HKop + Htp =% HKoo + Htp, X3+ X5 =2 X1 + Xo
HKpp, + Htp — HKpo + Htp,, Xo+ X5 = Xo + Xo

Htp, =% Htp Xo -2 Xs
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Finding a Grobner basis

System of steady states in stoichiometric compatibility classes (Cy 7):

K1 Ko K3
X1 )XQ )X3—>X4

0 = KgxzXs — K1X1

0 = ksxuxs + K1X1 — K2X2 > T1=x1+x +Xx3+ X X3‘|‘X5__4_>X1+X6

0 = KoXxo — K3X3 — K4X3Xs ‘ To = x5 + Xp

0 = KgXe — KaxX3Xs — R5X4X5

Xo 4+ Xs — Xo + Xo

Xo 25 X;
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Finding a Grobner basis

System of steady states in stoichiometric compatibility classes (Cy 7):

K1 Ko K3
X1 )XQ >X3—>X4

0 = KgxzXs — K1X1

0 = ksxuxs + K1X1 — K2X2 Ti =x1+x +x3 + x4 X3 + Xs ﬂ_)X1+X6
0 = Koxo — K3X3 — K4X3X5 To = x5 + Xg Xo 4 X5 =25 Xo + X

0 = KgXe — KaxX3Xs — K5X4Xs5 K
X6 — X5

Grobner basis, lexicographic order in x1, X2, X3, X4, X6, X5:
p1(xs) = (k1 + Ko)karskexs + (ki( Tikoka + Koke + Kakie) — Ta(K1 + Ka)Kake)KsXe
+ (k1kaok3(Tiks + ke) — Tak1(K2 + K3)kske)xs — Tak1K2K3Ke

pe(x1,x5) = Kiko(k1(ka — Ks5) + K3ks)x1 + (K1 + Iiz)/i4li5/€6X52

+ ka((Tiks + Ke)Rr1k2 — To(k1 + K2)Kske)xs — Takikokake
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Finding a Grobner basis

System of steady states in stoichiometric compatibility classes (Cy 7):

K1 Ko K3
X1 )XQ >X3—>X4

0 = KgxzXs — K1X1

0 = ksxuxs + K1X1 — K2X2 Ti =x1+x +x3 + x4 X3 + Xs __4_>X1+X6
0 = Kaxp — RK3X3 — KaX3X5 T2 = x5 + X6 Xa + X5 =25 Xo + Xg

0 = KgXe — KaxX3Xs — K5X4Xs5 K
X6 — X5

Grobner basis, lexicographic order in x1, X2, X3, X4, X6, X5:
p1(xs) = (k1 + Ko)karskexs + (ki( Tikoka + Koke + Kakie) — Ta(K1 + Ka)Kake)KsXe
+ (k1kaok3(Tiks + ke) — Tak1(K2 + K3)kske)xs — Tak1K2K3Ke

pe(x1,x5) = Kiko(k1(ka — Ks5) + K3ks)x1 + (K1 + liz)/i4/€5/<36X52

+ ka((Tiks + Ke)Rr1k2 — To(k1 + K2)Kske)xs — Takikokake

From ps we obtain:

_ (At k2)kakskexe + Ka((Tiks + Ke)kika — To(K1 + Ko2)kske)xs — TaK1K2Kake

X
' kik2(k1(Ks — Ka) + K3Ks)

When is this positive?
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Manual approach
Solving a linear system in xi, X2, X3, Xa, Xp:

Ko KakKsg Tlxg

(k1 + &2%4)H5X§ + k1(Kr2 + K3)Ks5X5 + K1K2K3
0= R4X3Xs — K1X1
k1(Kkaxs + K3)Ks5 T1X5
X2 = 5 0 = ksxuxs + K1X1 — K2X2
(k1 + Koka)Rsxs + K1(K2 + K3)KEXs + K1K2K3

0 = Koxo — K3X3 — K4X3X5
Kikoks T1x5
X3 = 5 0 = woxo—taxpx—toxaxs
(K1 + Kaka)RksXE + K1(k2 + K3)KsXs + K1K2K3
Ti=x1+x+x3+ x4
Kikok3 T1

X4 = T
(k1 + &2%4)/€5X52 + K1(k2 + K3)KsX5 + K1K2K3 2

X5 + Xgp.

X6 = T2 — X5.
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Manual approach
Solving a linear system in xi, X2, X3, Xa, Xp:

Ko KakKsg Tlxg

(k1 + /<;2/<;4)/<;5x52 + Kk1(K2 + K3)KsX5 + K1K2K3
0= R4X3Xs — K1X1
K1(Kaxs + K3)ks5 T1Xs
X2 = 5 0 = ksxuxs + K1X1 — K2X2
(k1 + Koka)Rsxs + K1(K2 + K3)KEXs + K1K2K3

0 = Koxo — K3X3 — K4X3X5
kik2ks T1x5
X3 = 5 0 = woxo—taxpx—toxaxs
(K1 + Kaka)RksXE + K1(k2 + K3)KsXs + K1K2K3
Ti=x1+x+x3+ x4
Kikok3 T1

X4 = T2 = X5 + Xg.
(k1 + koka)ksxe + K1(ko + K3)KsXs + K1K2K3

X6 = T2 — X5.

These expressions into the remaining equation give the same polynomial:

pi(xs) = (k1 + /432)/64/435/-66X§’ + (k1(T1ik2Ka + Koke + Kake) — To(k1 + /12)/€4/£6)/€5X52

+ (k1k2r3( Tiks + ke) — Torki(k2 + K3)Kske)Xs — TaK1K2K3K6-

{Positive roots of p; smaller than T,} <> {positive steady states}
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Linear Elimination

Let's take a look at part of the linear system:

(>'<1 = O) 0= R4X3Xs — K1X1 X1 ml) X2 m2> X3 ﬁ) X4
(X2 = 0) 0 = kKsxaxs + K1X1 — K2X2 Xz + X "”v_4> X1 + X
(x3 =0) 0= kKoxp — K3X3 — K4X3X5 s

().<4 = O) 0= K3X3 — KRp5X4Xs X4 + X5 — X2 + X6

Ti =x1+x +x3 + x4 X6R—6>X5

Can you see why the system is linear?
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Linear Elimination

Let's take a look at part of the linear system:

(x1 =0) 0= Kaxzxs — K1x1 X; =1 X, 225 X 23 X,
(X2 = 0) 0 = KsxuXs + K1X1 — K2X2 X3 + Xs 'ﬂ_4> X1 + X
(x3 =0) 0= kKoxp — K3X3 — K4X3X5 s

().<4 == O) 0= K3X3 — KRp5X4Xs X4 + X5 — X2 + X6

Ti =x1+x +x3 + x4 X6H—6>X5

Can you see why the system is linear?

Consider the steady state equations of the 4 species Xi, Xz, X3, X4, which do not interact
with each other, and write it as a linear system in xi, x2, X3, Xa:

—K1 0 K4Xs 0 X1 0
K1 —k2 0 K5X5 x| |0
O K2 — K3 — R4X5 0 X3 o O
0 0 R3 —K5X5 X4 0
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Linear Elimination

Let's take a look at part of the linear system:

. K',]_ 14,2 K
(x1 =0) 0= K4x3xs — K1X1 X1 — Xo —2 Xz — X4

(x2 =0) 0= KsxaXs + K1X1 — K2X2 X; + X N X + X

()-<3 = O) 0= Ko2X2 — R3X3 — K4X3X5 e
()-(4 — O) 0 = K3X3 — KsX4X5 Xy + Xg — Xo + Xp

Ti =x1+x +x3 + x4 X6R—6>X5

Can you see why the system is linear?

Consider the steady state equations of the 4 species Xi, Xz, X3, X4, which do not interact
with each other, and write it as a linear system in xi, x2, X3, Xa:

— K1 0 K4 X5 0 X1 0
K1 —k2 0 K5X5 x| |0
0 K2 — K3 — R4X5 0 X3 o O
0 0 R3 — K5 X5 X4 0

Is this matrix a Laplacian matrix of a labeled digraph with positive labels?
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Linear Elimination

(x1 =0) 0= Kkaxzxs — K1X1

(0o =0) 0= Ksxaxs + K1X1 — K2X2 —K1 0 K4Xs 0 X1
0 K2 — K3 — K4Xs 0 X3
0 0 K3 —R5X5 X4

0
0
0
0

(x4 =0) 0= K3x3 — K5x4X5
Ti=x1+x+x34+ x4

k5 Xg

We draw the digraph. /\
K

>q ' >>(3 /ﬂ)(q

I(Q)\ A’K =< ?> k"' XS

Fo= Kuxs o Koo KsXs l/\
) xz\) 3 )(\1
= kz ky '<5 Y;L
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Linear Elimination

(x1 =0) 0= Kkaxzxs — K1X1

().Q = O) 0 = KsxuXs + K1X1 — K2X0

— K1 0 K4 Xy 0 X1 0

()'<3 = O) 0 = KoxXo — K3X3 — K4X3Xg K1 —R2 0 K5 X5 X2 _ 0

. 0 2% —R3 — R4Xp 0 X3 o 0
x4 =0) 0= K3x3 — Kgxgx

( 4 ) 373 37470 0 0 R3 — Rg5Xp X4 0

Ti=x1+x+x34+ x4

Any solution is of the form A¢ with

2
£ = (Kakaksxs, K1ksXs(KaXs + K3), K1K2K5Xs5, K1K2K3)
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Linear Elimination

(x1 =0) 0= Kkaxzxs — K1X1

()'Q = O) 0 = KsxuXs + K1X1 — K2X0 — K1 0 K4X5 0 X1 0

()'<3 = O) 0 = KoxXo — K3X3 — K4X3Xg K1 — K2 0 K5 X5 X2 _ 0
. 0 Ko — K3 — K4Xs 0 x3] |0
x4 =0) 0= K3x3 — KgxgX

( 4 ) 373 37470 0 0 R3 — Rg5Xp X4 0

Ti=x1+x+x34+ x4

Any solution is of the form A¢ with
¢ = (KaKaksXs , K1Ksxs(KaXs + K3), K1K2K5Xs, K1K2K3)
But we have the extra equation T1 = x1 + X2 + x3 + x4:
T = >\(/<J2/<&4fi5X52 + K1ksXs(Kaxs + K3) + K1K2KsXs + K1K2K3)

SO

\ = Lk

Kok4KsXg K1 K5X5(KaXs+R3) TR Ko KEX5+K1 KD K3
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Linear Elimination

(x1 =0) 0= Kkaxzxs — K1X1

()'Q = O) 0 = KsxuXs + K1X1 — K2X0 — K1

()'<3 — O) 0 = KoxXo — K3X3 — K4X3Xg K1

(x4 =0) 0= K3x3 — K5x4X5 8
Ti =x1+x +x3+ x4

Any solution is of the form A¢ with

0 K4 Xy 0 X1 0
— K> 0 K5 X5 x| |0
Ko — K3 — K4Xs 0 x3 )] |0
0 R3 — Rg5Xp X4 0

2
£ = (Kakaksxs, K1ksXs(KaXs + K3), K1K2K5Xs5, K1K2K3)

But we have the extra equation T1 = x1 + X2 + x3 + x4:

2
T1 = M KoKaksxs + K1ksxs(Kaxs + K3) + K1K2ksXs + K1K2K3)

Ty

SO
A\ =
We recover
B KoKakKs T1X52
T (k1 + Kora)ksx? + K1(Kk2 + K3)RsXs + K1K2K3
Kk1koks T1x5
X3 =

(k1 + I<62/£4)f<65X§ + k1(Kr2 + K3)KsX5 + K1K2K3

E Feliu MPI Leipzig,

Kok4KsXg K1 K5X5(KaXs+R3) TR Ko KEX5+K1 KD K3

k1(Kkaxs + K3)Ks5 T1X5

X2
(k1 + Koka)ksxe + K1(ko + K3)KsXs + K1K2K3

Kikok3 T1

(k1 + Koka)Rsxg + ki(ko + K3)KsXs + K1K2K3

June 2023 7/12
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Another example

o::;x1 Xi + Xz 225 X, Xo + Xo 55 X,
0275 X, 022, X,

Non-interacting sets?

E Feliu MPI Leipzig, June 2023 8 /12



UNIVERSITY OF COPENHAGEN

DEPARTMENT OF MATHEMATICAL SCIENCES

Another example

o::;x1 Xi + Xz 225 X, Xo + Xo 55 X,
0275 X, 022, X,

Non-interacting sets? For example {Xi, X2}:

X1 = —R1X1X3 + KoXoX4 + K3 — KaXi

X2

K1X1X3 — R2X2X4.

At steady state (x1 = x» = 0):

X1
—KR1X3 — R4 K2 Xy K3 O
X2 =
K1X3 —koxa O 1 0

Is the coefficient matrix a Laplacian matrix of a digraph?
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Another example

0 ::; X1 X1+ X3 — X5 Xo+ Xo — X
05 X3 0 =25 X,.

At steady state (x; = xo = 0):

X1
—K1X3 — K4 Ko X4 K3 0
X2 p—
K1X3 —Koxs O 1 0

We extend the matrix to a Laplacian matrix (corresponds to adding a node):
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Another example

;f“; @ ¥z
Xi X1+ X3 X5 Xo + Xs =5 X4

(%>e M
X
1 *(— )(2_
At steady state (x; = xo = 0):

K2y
e,
X1 3 l‘
—K1X3 — K4  R2Xa K3 0

X2 = *
K1X3 —Koxs O 0

We extend the matrix to a Laplacian matrix (corresponds to adding a node):

—KR1X3 — R4 Ko Xy K3 X1 0
K1X3 —K2X4 0 X2 = 0
K4 0 —Ks3 1 0

MT-theorem: any vector in the kernel of A, is a multiple of (&1, &2, &3) with & positive.
As we want &3 = 1:
& &

&3’ = &3

X1 =

at any steady state.
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he linear elimination theory
Let G be a reaction network with set of species X = {Xi,..., X,}.

Definition: A subset
U={X,.... X} CX

is said to be non-interacting, if no pair of species in U appear on the same side of a
reaction and they all appear with stoichiometric coefficient equal to one.

Given a non-interacting set, the system of steady state equations x; =0,...,x, =0 is
linear in xi, ..., Xp.
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he linear elimination theory
Let G be a reaction network with set of species X = {Xi,..., X,}.

Definition: A subset
U={X,.... X} CX

is said to be non-interacting, if no pair of species in U appear on the same side of a
reaction and they all appear with stoichiometric coefficient equal to one.

Given a non-interacting set, the system of steady state equations x; =0,...,x, =0 is
linear in xi,...,Xp.

Case 1: x;y + -+ 4+ Xxp is a conservation law.
The coefficient matrix of the linear system is the Laplacian matrix of the labeled digraph

Gy with
® Set of nodes: {Xi,...,X,}

® An edge X; LNy =+ j, for each reaction
Xi + Z aeXe = X + Z BeXo,
l=p+1 L=p+1

_ &p+1 «
where A =KX,/ - X, ",
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he linear elimination theory

Case 2: x;1 + -+ 4+ Xp is not a conservation law.
The coefficient matrix of the linear system agrees with the first p rows of the Laplacian
matrix of the labeled digraph Gy with

® Set of nodes: {Xi,..., Xp, %}
® An edge X; 2 Xi, i # j, for each reaction

Xi + Z aeXe = X+ Z BeXe.

l=p+1 f=p+1

A :
® An edge X; — %, for each reaction

Xi + j{: ap Xy RN j{: BeXe.

{=p+1 L=p+1

A .
® An edge x — Xj, for each reaction

n

Z e Xe = Xi + Z BeXo.

(87
o — pHL L x@n
In all cases, \ = KX, 11 X, "
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he linear elimination theorem

Theorem: Let G be a reaction network with set of species X = {Xi,...,X,}.
Let

U={Xi,...,X,} C X

be non-interacting.

If the digraph Gy is strongly connected, then at steady state

Xi = ©j(Xpt1y- - Xn), jedl,...,p},

with ¢; a rational function with all coefficients (depending on x and T) positive.
(T is relevant only when x; 4+ --- 4+ x, = T is a conservation law).

The functions ¢;'s are found using the Matrix-Tree Theorem on Gy.

Feliu, Wiuf (2012)
Variable elimination in chemical reaction networks with mass action kinetics. SIAM Journal on Applied Mathematics. 72:4 pp 959-981.
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