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A hybrid histidine kinase

We consider a histidine kinase HK that can be phosphorylated at two sites, and which

transfers the phosphate group to an additional protein Htp that has one phosphorylation

site.

We have 6 species:

X1 = HK00, X2 = HKp0, X3 = HK0p, X4 = HKpp

X5 = Htp, X6 = Htpp

The reactions of the network are:

HK00
1�! HKp0

2�! HK0p
3�! HKpp

HK0p +Htp
4�! HK00 +Htpp

HKpp +Htp
5�! HKp0 +Htpp

Htpp
6�! Htp

X1
1�! X2

2�! X3
3�! X4

X3 + X5
4�! X1 + X6

X4 + X5
5�! X2 + X6

X6
6�! X5
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Finding a Gröbner basis
System of steady states in stoichiometric compatibility classes (C,T ):

0 = 4x3x5 � 1x1

0 = 5x4x5 + 1x1 � 2x2 T1 = x1 + x2 + x3 + x4

0 = 2x2 � 3x3 � 4x3x5 T2 = x5 + x6

0 = 6x6 � 4x3x5 � 5x4x5

X1
1��! X2

2��! X3
3��! X4

X3 + X5
4��! X1 + X6

X4 + X5
5��! X2 + X6

X6
6��! X5

Gröbner basis, lexicographic order in x1, x2, x3, x4, x6, x5:

p1(x5) = (1 + 2)456x
3
5 + (1(T124 + 26 + 36)� T2(1 + 2)46)5x

2
5

+ (123(T15 + 6)� T21(2 + 3)56)x5 � T21236

p6(x1, x5) = 12(1(4 � 5) + 35)x1 + (1 + 2)456x
2
5

+ 4((T15 + 6)12 � T2(1 + 2)56)x5 � T21246

From p6 we obtain:

x1 =
(1 + 2)456x2

5 + 4((T15 + 6)12 � T2(1 + 2)56)x5 � T21246

12(1(5 � 4) + 35)

When is this positive?
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Manual approach
Solving a linear system in x1, x2, x3, x4, x6:

x1 =
245T1x

2
5

(1 + 24)5x2
5 + 1(2 + 3)5x5 + 123

x2 =
1(4x5 + 3)5T1x5

(1 + 24)5x2
5 + 1(2 + 3)5x5 + 123

x3 =
125T1x5

(1 + 24)5x2
5 + 1(2 + 3)5x5 + 123

x4 =
123T1

(1 + 24)5x2
5 + 1(2 + 3)5x5 + 123

x6 = T2 � x5.

0 = 4x3x5 � 1x1

0 = 5x4x5 + 1x1 � 2x2

0 = 2x2 � 3x3 � 4x3x5

0 = 6x6 � 4x3x5 � 5x4x5

T1 = x1 + x2 + x3 + x4

T2 = x5 + x6.

These expressions into the remaining equation give the same polynomial:

p1(x5) = (1 + 2)456x
3
5 + (1(T124 + 26 + 36)� T2(1 + 2)46)5x

2
5

+ (123(T15 + 6)� T21(2 + 3)56)x5 � T21236.

{Positive roots of p1 smaller than T2} $ {positive steady states}

E Feliu MPI Leipzig, June 2023 4 / 12



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

Manual approach
Solving a linear system in x1, x2, x3, x4, x6:

x1 =
245T1x

2
5

(1 + 24)5x2
5 + 1(2 + 3)5x5 + 123

x2 =
1(4x5 + 3)5T1x5

(1 + 24)5x2
5 + 1(2 + 3)5x5 + 123

x3 =
125T1x5

(1 + 24)5x2
5 + 1(2 + 3)5x5 + 123

x4 =
123T1

(1 + 24)5x2
5 + 1(2 + 3)5x5 + 123

x6 = T2 � x5.

0 = 4x3x5 � 1x1

0 = 5x4x5 + 1x1 � 2x2

0 = 2x2 � 3x3 � 4x3x5

0 = 6x6 � 4x3x5 � 5x4x5

T1 = x1 + x2 + x3 + x4

T2 = x5 + x6.

These expressions into the remaining equation give the same polynomial:

p1(x5) = (1 + 2)456x
3
5 + (1(T124 + 26 + 36)� T2(1 + 2)46)5x

2
5

+ (123(T15 + 6)� T21(2 + 3)56)x5 � T21236.

{Positive roots of p1 smaller than T2} $ {positive steady states}

E Feliu MPI Leipzig, June 2023 4 / 12



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

Linear Elimination
Let’s take a look at part of the linear system:

(ẋ1 = 0) 0 = 4x3x5 � 1x1

(ẋ2 = 0) 0 = 5x4x5 + 1x1 � 2x2

(ẋ3 = 0) 0 = 2x2 � 3x3 � 4x3x5

(ẋ4 = 0) 0 = 3x3 � 5x4x5

T1 = x1 + x2 + x3 + x4

X1
1��! X2

2��! X3
3��! X4

X3 + X5
4��! X1 + X6

X4 + X5
5��! X2 + X6

X6
6��! X5

Can you see why the system is linear?

Consider the steady state equations of the 4 species X1,X2,X3,X4, which do not interact

with each other, and write it as a linear system in x1, x2, x3, x4:
0

BB@

�1 0 4x5 0

1 �2 0 5x5
0 2 �3 � 4x5 0

0 0 3 �5x5

1

CCA

0

BB@

x1
x2
x3
x4

1

CCA =

0

BB@

0

0

0

0

1

CCA

Is this matrix a Laplacian matrix of a labeled digraph with positive labels?
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Linear Elimination
(ẋ1 = 0) 0 = 4x3x5 � 1x1

(ẋ2 = 0) 0 = 5x4x5 + 1x1 � 2x2
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0

B@

�1 0 4x5 0
1 �2 0 5x5
0 2 �3 � 4x5 0
0 0 3 �5x5

1

CA

0

B@

x1
x2
x3
x4

1

CA =

0

B@

0
0
0
0

1

CA

We draw the digraph.
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Linear Elimination
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x1
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x3
x4

1

CA =
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0
0
0
0

1

CA

Any solution is of the form �⇠ with

⇠ = (245x
2
5 ,15x5(4x5 + 3),125x5,123)

But we have the extra equation T1 = x1 + x2 + x3 + x4:

T1 = �(245x
2
5 + 15x5(4x5 + 3) + 125x5 + 123)

so

� =
T1

245x
2
5+15x5(4x5+3)+125x5+123

We recover

x1 =
245T1x

2
5

(1 + 24)5x2
5 + 1(2 + 3)5x5 + 123

x2 =
1(4x5 + 3)5T1x5

(1 + 24)5x2
5 + 1(2 + 3)5x5 + 123

x3 =
125T1x5

(1 + 24)5x2
5 + 1(2 + 3)5x5 + 123

x4 =
123T1

(1 + 24)5x2
5 + 1(2 + 3)5x5 + 123
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Linear Elimination
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(ẋ3 = 0) 0 = 2x2 � 3x3 � 4x3x5

(ẋ4 = 0) 0 = 3x3 � 5x4x5

T1 = x1 + x2 + x3 + x4

0

B@

�1 0 4x5 0
1 �2 0 5x5
0 2 �3 � 4x5 0
0 0 3 �5x5

1

CA

0

B@

x1
x2
x3
x4

1

CA =

0

B@

0
0
0
0

1

CA

Any solution is of the form �⇠ with

⇠ = (245x
2
5 ,15x5(4x5 + 3),125x5,123)

But we have the extra equation T1 = x1 + x2 + x3 + x4:

T1 = �(245x
2
5 + 15x5(4x5 + 3) + 125x5 + 123)

so

� =
T1

245x
2
5+15x5(4x5+3)+125x5+123

We recover

x1 =
245T1x

2
5

(1 + 24)5x2
5 + 1(2 + 3)5x5 + 123

x2 =
1(4x5 + 3)5T1x5

(1 + 24)5x2
5 + 1(2 + 3)5x5 + 123

x3 =
125T1x5
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Another example

0
1��*)��2

X1 X1 + X3
3��! X2 X2 + X4

6��! X1

0
7��! X3 0

8��! X4.

Non-interacting sets?

For example {X1,X2}:

ẋ1 = �1x1x3 + 2x2x4 + 3 � 4x1

ẋ2 = 1x1x3 � 2x2x4.

At steady state (ẋ1 = ẋ2 = 0):

✓
�1x3 � 4 2x4 3

1x3 �2x4 0

◆0

@
x1
x2
1

1

A =

✓
0

0

◆

Is the coe�cient matrix a Laplacian matrix of a digraph?
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✓
�1x3 � 4 2x4 3

1x3 �2x4 0
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@
x1
x2
1

1

A =

✓
0

0

◆

We extend the matrix to a Laplacian matrix (corresponds to adding a node):

0

@
�1x3 � 4 2x4 3

1x3 �2x4 0

4 0 3

1

A

0

@
x1
x2
1

1

A =

0

@
0

0

0

1

A

MT-theorem: any vector in the kernel of A is a multiple of (⇠1, ⇠2, ⇠3) with ⇠i positive.
As we want ⇠3 = 1:

x1 =
⇠1
⇠3
, x2 =

⇠2
⇠3

at any steady state.
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The linear elimination theory
Let G be a reaction network with set of species X = {X1, . . . ,Xn}.

Definition: A subset

U = {X1, . . . ,Xp} ✓ X
is said to be non-interacting, if no pair of species in U appear on the same side of a

reaction and they all appear with stoichiometric coe�cient equal to one.

Given a non-interacting set, the system of steady state equations ẋ1 = 0, . . . , ẋp = 0 is

linear in x1, . . . , xp.

Case 1: x1 + · · ·+ xp is a conservation law.

The coe�cient matrix of the linear system is the Laplacian matrix of the labeled digraph

GU with

• Set of nodes: {X1, . . . ,Xp}

• An edge Xi
��! Xj , i 6= j , for each reaction

Xi +

nX

`=p+1

↵`X`
�! Xj +

nX

`=p+1

�`X`,

where � =  x
↵p+1
p+1 · · · x↵n

n .
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linear in x1, . . . , xp.

Case 1: x1 + · · ·+ xp is a conservation law.

The coe�cient matrix of the linear system is the Laplacian matrix of the labeled digraph

GU with

• Set of nodes: {X1, . . . ,Xp}

• An edge Xi
��! Xj , i 6= j , for each reaction

Xi +

nX

`=p+1

↵`X`
�! Xj +

nX

`=p+1

�`X`,

where � =  x
↵p+1
p+1 · · · x↵n

n .

E Feliu MPI Leipzig, June 2023 10 / 12



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

The linear elimination theory
Case 2: x1 + · · ·+ xp is not a conservation law.

The coe�cient matrix of the linear system agrees with the first p rows of the Laplacian

matrix of the labeled digraph GU with

• Set of nodes: {X1, . . . ,Xp, ?}
• An edge Xi

��! Xj , i 6= j , for each reaction

Xi +

nX

`=p+1

↵`X`
�! Xj +

nX

`=p+1

�`X`.

• An edge Xi
��! ?, for each reaction

Xi +

nX

`=p+1

↵`X`
�!

nX

`=p+1

�`X`.

• An edge ?
��! Xi , for each reaction

nX

`=p+1

↵`X`
�! Xi +

nX

`=p+1

�`X`.

• In all cases, � =  x
↵p+1
p+1 · · · x↵n

n .
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The linear elimination theorem

Theorem: Let G be a reaction network with set of species X = {X1, . . . ,Xn}.
Let

U = {X1, . . . ,Xp} ✓ X
be non-interacting.

If the digraph GU is strongly connected, then at steady state

xj = 'j(xp+1, . . . , xn), j 2 {1, . . . , p},

with 'j a rational function with all coe�cients (depending on  and T ) positive.

(T is relevant only when x1 + · · ·+ xp = T is a conservation law).

The functions 'j ’s are found using the Matrix-Tree Theorem on GU .

Feliu, Wiuf (2012)
Variable elimination in chemical reaction networks with mass action kinetics. SIAM Journal on Applied Mathematics. 72:4 pp 959–981.
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